Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2021 |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosph ... Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.; Published by: Journal of Geophysical Research: Atmospheres Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JD033098 electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD |
Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ... Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.; Published by: Geophysical Research Letters Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL091564 electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes |
2019 |
Direct Observation of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves Electromagnetic ion cyclotron (EMIC) waves are known to typically cause electron losses into Earth\textquoterights upper atmosphere at >~1 MeV, while the minimum energy of electrons subject to efficient EMIC-driven precipitation loss is unresolved. This letter reports electron precipitation from subrelativistic energies of ~250 keV up to ~1 MeV observed by the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, while two Polar Operational Environmental Satellites (POES) ... Capannolo, L.; Li, W.; Ma, Q.; Chen, L.; Shen, X.-C.; Spence, H.; Sample, J.; Johnson, A.; Shumko, M.; Klumpar, D.; Redmon, R.; Published by: Geophysical Research Letters Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019GL084202 electron precipitation; EMIC waves; FIREBIRD-II; quasi linear theory; Radiation belts; Van Allen Probes; wave particle interactions |
2018 |
Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field-aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self-consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qu ... Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R.; Published by: Geophysical Research Letters Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018GL077748 Alfven waves; field line resonances; kinetic effects; numerical modeling; particle trapping; Radiation belts; Van Allen Probes |
2017 |
We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus ... Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.; Published by: Geophysical Research Letters Published on: 11/2017 YEAR: 2017   DOI: 10.1002/2017GL075001 |
2013 |
The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including ke ... Kletzing, C.; Kurth, W.; Acuna, M.; MacDowall, R.; Torbert, R.; Averkamp, T.; Bodet, D.; Bounds, S.; Chutter, M.; Connerney, J.; Crawford, D.; Dolan, J.; Dvorsky, R.; Hospodarsky, G.; Howard, J.; Jordanova, V.; Johnson, R.; Kirchner, D.; Mokrzycki, B.; Needell, G.; Odom, J.; Mark, D.; Pfaff, R.; Phillips, J.; Piker, C.; Remington, S.; Rowland, D.; Santolik, O.; Schnurr, R.; Sheppard, D.; Smith, C.; Thorne, R.; Tyler, J.; Published by: Space Science Reviews Published on: 11/2013 YEAR: 2013   DOI: 10.1007/s11214-013-9993-6 |
1