Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2020 |
On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long ... Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028098 Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes |
2019 |
Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.; Published by: Nature Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1038/nphys4351 |
2016 |
Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave\textendashparticle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion ... Mann, I.; Ozeke, L.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Reeves, G.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.; Published by: Nature Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1038/nphys3799 Astrophysical plasmas; Magnetospheric physics; Van Allen Probes |
2014 |
We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van All ... Usanova, M.; Drozdov, A.; Orlova, K.; Mann, I.; Shprits, Y.; Robertson, M.; Turner, D.; Milling, D.; Kale, A.; Baker, D.; Thaller, S.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.; Published by: Geophysical Research Letters Published on: 03/2014 YEAR: 2014   DOI: 10.1002/2013GL059024 |
Spatial localization and ducting of EMIC waves: Van Allen Probes and ground-based observations On 11 October 2012, during the recovery phase of a moderate geomagnetic storm, an extended interval (> 18 h) of continuous electromagnetic ion cyclotron (EMIC) waves was observed by Canadian Array for Real-time Investigations of Magnetic Activity and Solar-Terrestrial Environment Program induction coil magnetometers in North America. At around 14:15 UT, both Van Allen Probes B and A (65\textdegree magnetic longitude apart) in conjunction with the ground array observed very narrow (ΔL ~ 0.1\textendash0.4) left-hand polarized ... Mann, I.; Usanova, M.; Murphy, K.; Robertson, M.; Milling, D.; Kale, A.; Kletzing, C.; Wygant, J.; Thaller, S.; Raita, T.; Published by: Geophysical Research Letters Published on: 02/2014 YEAR: 2014   DOI: 10.1002/2013GL058581 |
2013 |
James Van Allen and His Namesake NASA Mission In many ways, James A. Van Allen defined and \textquotedblleftinvented\textquotedblright modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities. Baker, D.; Hoxie, V.; Jaynes, A.; Kale, A.; Kanekal, S.; Li, X.; Reeves, G.; Spence, H.; Published by: Eos, Transactions American Geophysical Union Published on: 12/2013 YEAR: 2013   DOI: 10.1002/eost.v94.4910.1002/2013EO490001 |
Although the Earth\textquoterights Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency inte ... Mann, Ian; Lee, E.; Claudepierre, S.; Fennell, J.; Degeling, A.; Rae, I.; Baker, D.; Reeves, G.; Spence, H.; Ozeke, L.; Rankin, R.; Milling, D.; Kale, A.; Friedel, R.; Honary, F.; Published by: Nature Communications Published on: 11/2013 YEAR: 2013   DOI: 10.1038/ncomms3795 |
1