Found 2 entries in the Bibliography.

Showing entries from 1 through 2


Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field

The quasi-linear velocity space diffusion is considered for waves of any oscillation branch propagating at an arbitrary angle to a uniform magnetic field in a spatially uniform plasma. The space-averaged distribution function is assumed to change slowly compared to a gyroperiod and characteristic times of the wave motion. Nonlinear mode coupling is neglected. An H-like theorem shows that both resonant and nonresonant quasi-linear diffusion force the particle distributions towards marginal stablity. Creation of the marginally ...

Kennel, C.;

YEAR: 1966     DOI: 10.1063/1.1761629

Local Loss due to VLF/ELF/EMIC Waves

Limit on Stably Trapped Particle Fluxes

Whistler mode noise leads to electron pitch angle diffusion. Similarly, ion cyclotron noise couples to ions. This diffusion results in particle precipitation into the ionosphere and creates a pitch angle distributon of trapped particles that is unstable to further wave growth. Since excessive wave growth leads to rapid diffusion and particle loss, the requirement that the growth rate be limited to the rate at which wave energy is depleted by wave propagation permits an estimate of an upper limit to the trapped equatorial par ...

Kennel, C.; Petschek, H.;

YEAR: 1966     DOI: 10.1029/JZ071i001p00001

Local Loss due to VLF/ELF/EMIC Waves