Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2018 |
Global model of plasmaspheric hiss from multiple satellite observations We present a global model of plasmaspheric hiss, using data from eight satellites, extending the coverage and improving the statistics of existing models. We use geomagnetic activity dependent templates to separate plasmaspheric hiss from chorus. In the region 22-14 MLT the boundary between plasmaspheric hiss and chorus moves to lower L* values with increasing geomagnetic activity. The average wave intensity of plasmaspheric hiss is largest on the dayside and increases with increasing geomagnetic activity from midnight throu ... Meredith, Nigel; Horne, Richard; Kersten, Tobias; Li, Wen; Bortnik, Jacob; Sicard-Piet, elica; Yearby, Keith; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2018JA025226 plasmasphere; Plasmaspheric Hiss; Radiation belts; Van Allen Probes |
2015 |
Using the Van Allen Probes we investigate the enhancement in the large scale duskward convection electric field during the geomagnetic storm (Dst ~ -120 nT) on June 1, 2013 and its role in ring current ion transport and energization, and plasmasphere erosion. During this storm, enhancements of ~1-2 mV/m in the duskward electric field in the co-rotating frame are observed down to L shells as low as ~2.3. A simple model consisting of a dipole magnetic field and constant, azimuthally westward, electric field is used to calculat ... Thaller, S.; Wygant, J.; Dai, L.; Breneman, A.W.; Kersten, K.; Cattell, C.A.; Bonnell, J.W.; Fennell, J.F.; Gkioulidou, Matina; Kletzing, C.A.; De Pascuale, S.; Hospodarsky, G.B.; Bounds, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2015 YEAR: 2015   DOI: 10.1002/2014JA020875 electric field; inner magnetosphere; plasma convection; plasmasphere; ring current; Van Allen Probes |
2014 |
Electron losses from the radiation belts caused by EMIC waves Electromagnetic Ion Cyclotron (EMIC) waves cause electron loss in the radiation belts by resonating with high-energy electrons at energies greater than about 500 keV. However, their effectiveness has not been fully quantified. Here we determine the effectiveness of EMIC waves by using wave data from the fluxgate magnetometer on CRRES to calculate bounce-averaged pitch angle and energy diffusion rates for L*=3.5\textendash7 for five levels of Kp between 12 and 18 MLT. To determine the electron loss, EMIC diffusion rates were ... Kersten, Tobias; Horne, Richard; Glauert, Sarah; Meredith, Nigel; Fraser, Brian; Grew, Russell; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2014 YEAR: 2014   DOI: 10.1002/2014JA020366 |
Observation and model results accumulated in the last decade indicate that substorms can promptly inject relativistic \textquoteleftkiller\textquoteright electrons (>=MeV) in addition to 10\textendash100 keV subrelativistic populations. Using measurements from Cluster, Polar, LANL, and GOES satellites near the midnight sector, we show in two events that intense electric fields, as large as 20 mV/m, associated with substorm dipolarization are associated with injections of relativistic electrons into the outer radiation belt. ... Dai, Lei; Wygant, John; Cattell, Cynthia; Thaller, Scott; Kersten, Kris; Breneman, Aaron; Tang, Xiangwei; Friedel, Reiner; Claudepierre, Seth; Tao, Xin; Published by: Geophysical Research Letters Published on: 02/2014 YEAR: 2014   DOI: 10.1002/2014GL059228 radiation belt relativistic electrons; substorm dipolarization; substorm electric fields; substorm injection |
Chorus waves and spacecraft potential fluctuations: Evidence for wave-enhanced photoelectron escape Chorus waves are important for electron energization and loss in Earth\textquoterights radiation belts and inner magnetosphere. Because the amplitude and spatial distribution of chorus waves can be strongly influenced by plasma density fluctuations and spacecraft floating potential can be a diagnostic of plasma density, the relationship between measured potential and chorus waves is examined using Van Allen Probes data. While measured potential and chorus wave electric fields correlate strongly, potential fluctuation propert ... Malaspina, D.; Ergun, R.; Sturner, A.; Wygant, J.; Bonnell, J; Breneman, A.; Kersten, K.; Published by: Geophysical Research Letters Published on: 01/2014 YEAR: 2014   DOI: 10.1002/2013GL058769 |
Observations of kinetic scale field line resonances We identify electromagnetic field variations from the Van Allen Probes which have the properties of Doppler shifted kinetic scale Alfv\ enic field line resonances. These variations are observed during injections of energetic plasmas into the inner magnetosphere. These waves have scale sizes perpendicular to the magnetic field which are determined to be of the order of an ion gyro-radius (ρi) and less. Cross-spectral analysis of the electric and magnetic fields reveals phase transitions at frequencies correlated with enhance ... Chaston, Christopher; Bonnell, J; Wygant, John; Mozer, Forrest; Bale, Stuart; Kersten, Kris; Breneman, Aaron; Kletzing, Craig; Kurth, William; Hospodarsky, George; Smith, Charles; MacDonald, Elizabeth; Published by: Geophysical Research Letters Published on: 01/2014 YEAR: 2014   DOI: 10.1002/2013GL058507 |
2013 |
The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in t ... Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.; Published by: Space Science Reviews Published on: 11/2013 YEAR: 2013   DOI: 10.1007/s11214-013-0013-7 |
1