Bibliography



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2020

New Insights From Long-Term Measurements of Inner Belt Protons (10s of MeV) by SAMPEX, POES, Van Allen Probes, and Simulation Results

The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) mission provided long-term measurements of 10s of megaelectron volt (MeV) inner belt (L < 2) protons (1992–2009) as did the Polar-orbiting Operational Environmental Satellite-18 (POES-18, 2005 to present). These long-term measurements at low-Earth orbit (LEO) showed clear solar cycle variations which anticorrelate with sunspot number. However, the magnitude of the variation is much greater than the solar cycle variation of galactic cosmic rays (>GeV) tha ...

Li, Xinlin; Xiang, Zheng; Zhang, Kun; Khoo, Lengying; Zhao, Hong; Baker, Daniel; Temerin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028198

Inner radiation belt; Inner Belt Proton; Solar cycle variation; Cosmic rays; neutron monitor; Low Earth Orbit satellite; Van Allen Probes

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dy ...

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

Simulations of Electron Flux Oscillations as Observed by MagEIS in Response to Broadband ULF Waves

Coherent electron flux oscillations of hundreds of keV are often observed by the Van Allen Probes in the magnetosphere during quiet times in association with ultralow frequency (ULF) waves. They are observed in the form of periodic flux fluctuations, with a drift frequency that is energy dependent, but are not associated with drift echoes following storm- or substorm-related energetic particle injections. Instead, they are associated with the resonant interaction of electrons with ULF waves and are an indication of ongoing e ...

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Khoo, Leng; Turner, Drew; Liu, Wenlong; Claudepierre, Seth;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027798

electron flux oscillations; ULF waves; Magnetosphere; Radiation belts; radial diffusion; particle tracing simulations; Van Allen Probes

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at diffe ...

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

2019

How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions

In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > -30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecuti ...

Khoo, L.-Y.; Li, X.; Zhao, H.; Chu, X.; Xiang, Z.; Zhang, K.;

YEAR: 2019     DOI: 10.1029/2019JA027412

energetic electron enhancements; Plasmapause; Radiation Belt Dynamics; Van Allen Probes

2018

On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods

Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when c ...

Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard;

YEAR: 2018     DOI: 10.1029/2018JA026074

energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes



  1