## Found 2 entries in the Bibliography.

### Showing entries from 1 through 2

2014 |

A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of It\^o stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch ...
YEAR: 2014 DOI: 10.1002/jgra.v119.910.1002/2014JA020127 adiabatic invariant coordinates; diffusion equation; fully 3-D model; Radiation belt; stochastic differential equation |

We expanded our previous work on L* neural networks that used empirical magnetic field models as the underlying models by applying and extending our technique to drift shells calculated from a physics-based magnetic field model. While empirical magnetic field models represent an average, statistical magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes magnetic fields based on fundamental equations of plasma physics. Unlike the previous L* neural networks that include McIlwai ...
YEAR: 2014 DOI: 10.1002/jgra.v119.310.1002/2013JA019350 |

1