Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 9 entries in the Bibliography.
Showing entries from 1 through 9
2021 |
Abstract We performed a comprehensive statistical study of electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes and Exploration of energization and Radiation in Geospace satellite (ERG/Arase). From 2017 to 2018, we identified and categorized EMIC wave events with respect to wavebands (H+ and He+ EMIC waves) and relative locations from the plasmasphere (inside and outside the plasmasphere). We found that H+ EMIC waves in the morning sector at L>8 are predominantly observed with a mixture of linear and r ... Jun, C.-W; Miyoshi, Y.; Kurita, S.; Yue, C.; Bortnik, J.; Lyons, L.; Nakamura, S.; Shoji, M.; Imajo, S.; Kletzing, C.; Kasahara, Y.; Kasaba, Y.; Matsuda, S.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029001 Spatial distributions of EMIC waves; RBSP and Arase observations; EMIC wave properties; EMIC wave dependence on geomagnetic condition; Van Allen Probes |
2020 |
We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ... Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028765 By; y-component; inner magnetosphere; IMF; response; Van Allen Probes |
Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the po ... Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028126 VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes |
2019 |
We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ... Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.; Published by: Geophysical Research Letters Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019GL084379 |
Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ... Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL083024 Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes |
2018 |
There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ... Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.; Published by: Geophysical Research Letters Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018GL080262 EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes |
2016 |
It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8\textendash9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by th ... Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, Bernard; Reeves, Geoffery; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 02/2016 YEAR: 2016   DOI: 10.1002/2016GL068260 Radiation belts; relativistic electron microbursts; relativistic electrons; SAMPEX; Van Allen Probes; whistler mode chorus |
2015 |
It has been believed that whistler mode waves can cause relativistic electron precipitations. It has been also pointed out that pitch angle scattering of ~keV electrons by whistler mode waves results in diffuse auroras. Thus, it is natural to expect relativistic electron precipitations associated with diffuse auroras. Based on a conjugate observation between the SAMPEX spacecraft and the all-sky TV camera at Syowa Station, we report, for the first time, a case in which relativistic electron precipitations are associated with ... Kurita, Satoshi; Kadokura, Akira; Miyoshi, Yoshizumi; Morioka, Akira; Sato, Yuka; Misawa, Hiroaki; Published by: Geophysical Research Letters Published on: 06/2015 YEAR: 2015   DOI: 10.1002/2015GL064564 diffuse aurora; Radiation belts; SAMPEX; Syowa Station; whistler mode wave |
Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also sub-relativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler-mode wave\textendashparticle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Troms\o VHF radar on 17 November 2012. Electron density enhancements w ... Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C.; Turunen, E.; Tsuchiya, F.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2015 YEAR: 2015   DOI: 10.1002/2014JA020690 EISCAT; pitch angle scattering; pulsating aurora; Van Allen Probes |
1