Bibliography



Found 38 entries in the Bibliography.


Showing entries from 1 through 38


2019

Eastward Propagating Second Harmonic Poloidal Waves Triggered by Temporary Outward Gradient of Proton Phase Space Density: Van Allen Probe A Observation

Two wave packets of second harmonic poloidal Pc 4 waves with a wave frequency of ~7 mHz were detected by Van Allen Probe A at a radial distance of ~5.8 RE and magnetic local time of 13 hr near the magnetic equator, where plasmaspheric refilling was in progress. Proton butterfly distributions with energy dispersions were also measured at the same time; the proton fluxes at 10-30 keV oscillated with the same frequency as the Pc 4 waves. Using the ion sounding technique, we find that the Pc 4 waves propagated eastward with an a ...

Yamamoto, K.; e, Nos\; Keika, K.; Hartley, D.P.; Smith, C.W.; MacDowall, R.J.; Lanzerotti, L.J.; Mitchell, D.G.; Spence, H.E.; Reeves, G.D.; Wygant, J.R.; Bonnell, J.W.; Oimatsu, S.;

YEAR: 2019     DOI: 10.1029/2019JA027158

drift-bounce resonance; Geomagnetic storm; plasmasphere; ring current; substorm; ULF wave; Van Allen Probes

Observational evidence of the drift-mirror plasma instability in Earth\textquoterights inner magnetosphere

We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth\textquoterights inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA\textquoterights Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode pla ...

Soto-Chavez, A.; Lanzerotti, L.; Manweiler, J.; Gerrard, A.; Cohen, R.; Xia, Z.; Chen, L.; Kim, H.;

YEAR: 2019     DOI: 10.1063/1.5083629

Van Allen Probes

Space Research and Space Weather: Some Personal Vignettes 1965 to Early 1980s

Personal vignettes are given on early days of space research, space weather, and space advisory activities from 1965 to early 1980s.

Lanzerotti, Louis;

YEAR: 2019     DOI: 10.1029/2019JA026763

Van Allen Probes

Statistical Study of Selective Oxygen Increase in High-Energy Ring Current Ions During Magnetic Storms

Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence condit ...

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.;

YEAR: 2019     DOI: 10.1029/2018JA026168

Magnetic Storms; Oxygen ions; ring current; Van Allen Probes

2018

Response of Different Ion Species to Local Magnetic Dipolarization Inside Geosynchronous Orbit

This paper examines how hydrogen, helium and oxygen (H, He and O) ion fluxes at 1\textendash1000 keV typically respond to local magnetic dipolarization inside geosynchronous orbit (GEO). We extracted 144 dipolarizations which occurred at magnetic inclination > 30\textdegree from the 2012\textendash2016 tail seasons\textquoteright observations of the Van Allen Probes spacecraft and then defined typical flux changes of these ion species by performing a superposed epoch analysis. On average, the dipolarization inside GEO is acc ...

Motoba, T.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A.; Mitchell, D.; Takahashi, K.; Lanzerotti, L.; Kletzing, C.; Spence, H.; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018JA025557

deep inside geosynchronous orbit; dipolarizations; Ion injections; ion species; Van Allen Probes

Radial Transport of Higher-Energy Oxygen Ions Into the Deep Inner Magnetosphere Observed by Van Allen Probes

The transport mechanism of the ring current ions differs among ion energies. Lower-energy (≲150 keV) ions are well known to be transported convectively. Higher-energy (≳150 keV) protons are reported to be transported diffusively, while there are few reports about transport of higher-energy oxygen ions. We report the radial transport of higher-energy oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm on 23\textendash25 April 2013 observed by the Van Allen Probes spacecraft. An e ...

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.;

YEAR: 2018     DOI: 10.1029/2018GL077500

magnetic storm; oxygen ion; ring current; Van Allen Probes

Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification

We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southwa ...

Keika, Kunihiro; Seki, Kanako; e, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Manweiler, Jerry;

YEAR: 2018     DOI: 10.1002/2017JA024462

enhancements of oxygen ions of ionospheric origin; plasma transport from the plasma sheet into the inner magnetosphere; RBSPICE; unexpected intensification of the magnetic storm; Van Allen Probes

2017

Ring Current He-Ion Control by Bounce Resonant ULF Waves

Ring current energy He-ion (\~65 keV to \~520 keV) differential flux data from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft show considerable variability during quiet solar wind and geomagnetic time periods. Such variability is apparent from orbit to orbit (\~9 hours) of the spacecraft and is observed to be \~50\textendash100\% of the nominal flux. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrume ...

Kim, Hyomin; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, Rualdo; Cohen, Ross; Manweiler, Jerry;

YEAR: 2017     DOI: 10.1002/2017JA023958

bounce resonance; Helium ion; ring current; ULF waves; Van Allen Probes

The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations

Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with ...

Yue, Chao; Bortnik, Jacob; Thorne, Richard; Ma, Qianli; An, Xin; Chappell, C.; Gerrard, Andrew; Lanzerotti, Louis; Shi, Quanqi; Reeves, Geoffrey; Spence, Harlan; Mitchell, Donald; Gkioulidou, Matina; Kletzing, Craig;

YEAR: 2017     DOI: 10.1002/2017JA024421

bi-directional field-aligned; H+ Pitch angle distributions; plasmaspheric H+; radiation belt H+; ring current; Van Allen Probes; warm Plasma cloak

Dominance of high energy (>150 keV) heavy ion intensities in Earth\textquoterights middle to outer magnetosphere

Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale (MMS) mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically ...

Cohen, Ian; Mitchell, Donald; Kistler, Lynn; Mauk, Barry; Anderson, Brian; Westlake, Joseph; Ohtani, Shinichi; Hamilton, Douglas; Turner, Drew; Blake, Bern; Fennell, Joseph; Jaynes, Allison; Leonard, Trevor; Gerrard, Andrew; Lanzerotti, Louis; Allen, Robert; Burch, James;

YEAR: 2017     DOI: 10.1002/2017JA024351

energetic ion composition; magnetospheric ion composition; Magnetospheric Multiscale (MMS); outer magnetosphere; ring current composition; suprathermal ions; Van Allen Probes

Space Weather Research: Earth\textquoterights Radiation Belts

Fundamental research on Earth\textquoterights space radiation environment is essential for the design and the operations of modern technologies \textendash for communications, weather, navigation, national security \textendash that fly in the hostile space weather conditions above Earth\textquoterights atmosphere. As the technologies become ever more advanced, more sophisticated understanding \textendash and even predictability \textendash of the environment is required for mission success

Lanzerotti, Louis; Baker, Daniel;

YEAR: 2017     DOI: 10.1002/2017SW001654

Earth\textquoterights radiation belts; Space Weather Research; Van Allen Probes

Climatology of high-β plasma measurements in Earth\textquoterights inner magnetosphere

Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high-resolution measurements of Earth\textquoterights ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high-beta (β) plasma events (defined here as β > 1) as measured by the RBSPICE instrument in the \~45 keV to \~600 keV proton energy range in the inner ...

Cohen, Ross; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, A.; Kim, Hyomin; Manweiler, Jerry;

YEAR: 2017     DOI: 10.1002/2016JA022513

climatology; high-beta plasma; inner magnetosphere; RBSPICE; Van Allen Probes

2016

Climatology of high β plasma measurements in Earth\textquoterights inner magnetosphere

Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high resolution measurements of Earth\textquoterights ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high beta (β) plasma events (defined here as β>1) as measured by the RBSPICE instrument in the \~45-keV to \~600-keV proton energy range in the inner m ...

Cohen, Ross; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, A.; Kim, Hyomin; Manweiler, Jerry;

YEAR: 2016     DOI: 10.1002/2016JA022513

climatology; high beta plasma; inner magnetosphere; RBSPICE; Van Allen Probes

The permeability of the magnetopause to a multispecies substorm injection of energetic particles

Leakage of ions from the magnetosphere into the magnetosheath remains an important topic in understanding the plasma physics of Earth\textquoterights magnetopause and the interaction of the solar wind with the magnetosphere. Here using sophisticated instrumentation from two spacecraft (Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes and Energetic Ion Spectrometer on the Magnetospheric Multiscale) spaced uniquely near and outside the dayside magnetopause, we are able to determine the escape mech ...

Westlake, J.; Cohen, I.; Mauk, B.; Anderson, B.; Mitchell, D.; Gkioulidou, M.; Walsh, B.; Lanzerotti, L.; Strangeway, R.; Russell, C.;

YEAR: 2016     DOI: 10.1002/2016GL070189

energetic particles; magnetopause; magnetosheath; MMSEPD; Van Allen Probes

RBSPICE measurement of ion loss during the 2015 March storm: Adiabatic response to the geomagnetic field change

A strongly energy-dependent ring current ion loss was measured by the RBSPICE instrument on the Van Allen Probes A spacecraft in the local evening sector during the 17 March 2015 geomagnetic storm. The ion loss is found to be energy dependent where only ions with energies measured above \~ 150 keV have a significant drop in intensity. At these energies the ion dynamics are principally controlled by variations of the geomagnetic field which, during magnetic storms, exhibits large scale variations on timescales from minutes ...

Soto-Chavez, A.; Lanzerotti, L.; Gerrard, A.; Kim, H.; Bortnik, J.; Manweiler, J.;

YEAR: 2016     DOI: 10.1002/2016JA022512

inner magnetosphere; Magnetic Storms; Ring current ion.; Van Allen Probes

Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere

We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22\textendash23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolut ...

Keika, Kunihiro; Seki, Kanako; e, Masahito; Machida, Shinobu; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Turner, Drew; Spence, Harlan; Larsen, Brian;

YEAR: 2016     DOI: 10.1002/2016JA022384

adiabatic transport from the plasma sheet; oxygen ions of ionospheric origin; preconditions of magnetic storms; preexisting oxygen ions trapped in the inner magnetosphere; Van Allen Probes; Van Allen Probes RBSPICE observations

The Source of O + in the Storm-time Ring Current

A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, t ...

Kistler, L.M.; Mouikis, C.; Spence, H.E.; Menz, A.M.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M.; Wygant, J.R.; Lanzerotti, L.J.;

YEAR: 2016     DOI: 10.1002/2015JA022204

Geomagnetic storm; Ionosphere; oxygen; plasma sheet; Plasma Sources; ring current; Van Allen Probes

A statistical study of proton pitch angle distributions measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

A statistical study of ring current-energy proton pitch angle distributions (PADs) in Earth\textquoterights inner magnetosphere is reported here. The data are from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the Van Allen Probe B spacecraft from January 1, 2013 to April 15, 2015. By fitting the data to the functional form sinnα, where α is the proton pitch angle, we examine proton PADs at the energies 50, 100, 180, 328 and 488 keV in the L-shell range from L = 2.5 to L = 6. Three PAD types ...

Shi, Run; Summers, Danny; Ni, Binbin; Manweiler, Jerry; Mitchell, Donald; Lanzerotti, Louis;

YEAR: 2016     DOI: 10.1002/2015JA022140

proton pitch angle distributions; Van Allen Probes

Storm-time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere

Our investigation of the long-term ring current proton pressure evolution in Earth\textquoterights inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to theSYM-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of SYM-H index, the high-energy component (>100 keV) va ...

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Lanzerotti, L.;

YEAR: 2016     DOI: 10.1002/2016GL068013

energy budget; Geomagnetic storms; inner magnetosphere; ring current; Van Allen Probes

Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; a ...

Zhao, H.; Li, X.; Baker, D.; Claudepierre, S.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.;

YEAR: 2016     DOI: 10.1002/2016JA022358

deep injections; Geomagnetic storms; ring current; ring current energy content; ring current electrons; Van Allen Probes

Storm-time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere

Our investigation of the long-term ring current proton pressure evolution in Earth\textquoterights inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to the Sym-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of Sym-H index, the high-energy component (>100 keV) v ...

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Lanzerotti, L.;

YEAR: 2016     DOI: 10.1002/2016GL068013

energy budget; Geomagnetic storms; inner magnetosphere; ring current; Van Allen Probes

2015

Extreme ionospheric ion energization and electron heating in Alfv\ en waves in the storm-time inner magnetosphere

We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to > 50 keV while the electrons are field-aligned up to ~1 keV. These particle distributions are observed during intervals of broadband low frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfv\ en waves and kinetic fi ...

Chaston, C.; Bonnell, J.; Wygant, J.; Kletzing, C.; Reeves, G.; Gerrard, A.; Lanzerotti, L.; Smith, C.;

YEAR: 2015     DOI: 10.1002/2015GL066674

Alfven waves; electron precipitation; Geomagnetic storms; ion acceleration; ion outflow; ion upflo

On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values o ...

Motoba, T.; Ohtani, S.; Anderson, B.; Korth, H.; Mitchell, D.; Lanzerotti, L.; Shiokawa, K.; Connors, M.; Kletzing, C.; Reeves, G.;

YEAR: 2015     DOI: 10.1002/jgra.v120.1010.1002/2015JA021676

FACs; growth phase/onset arc; M-I coupling; Van Allen Probes

The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute m ...

Zhao, H.; Li, X.; Baker, D.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Rodriguez, J.;

YEAR: 2015     DOI: 10.1002/2015JA021533

Geomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes

Neutral Oxygen Effects at Low Earth Altitudes: A Critical Uncertainty for Spacecraft Operations and Space Weather Effects

Space Weather sits at the intersection of natural phenomena interacting with modern technology\textemdasheither in space or on Earth\textquoterights surface. A key aspect of space weather is the interaction of Earth\textquoterights extended neutral atmosphere with satellite surfaces [e.g., Samwel, 2014, and references therein]. Because neutral oxygen causes spacecraft surface erosion and oxidation, detailed knowledge of the atmosphere below 1000 km is essential for spacecraft design and operations.

Bonnell, John; Lanzerotti, Louis;

YEAR: 2015     DOI: 10.1002/2015SW001229

atmosphere oxygen; Space weather

Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager

We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3 ...

Motoba, T.; Takahashi, K.; Ukhorskiy, A.; Gkioulidou, M.; Mitchell, D.; Lanzerotti, L.; Korotova, G.; Donovan, E.; Wygant, J.; Kletzing, C.; Kurth, W.; Blake, J.;

YEAR: 2015     DOI: 10.1002/2014JA020863

Van Allen Probes

Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event.

Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ - 40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observe ...

Gkioulidou, Matina; Ohtani, S.; Mitchell, D.; Ukhorskiy, A.; Reeves, G.; Turner, D.; Gjerloev, J.; e, Nos\; Koga, K.; Rodriguez, J.; Lanzerotti, L.;

YEAR: 2015     DOI: 10.1002/2014JA020872

inner magnetosphere; Van Allen Probes

On the use of drift echoes to characterize on-orbit sensor discrepancies

We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel\textquoterights drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen probes mission. Drift ...

O\textquoterightBrien, T.P.; Claudepierre, S.G.; Looper, M.D.; Blake, J.B.; Fennell, J.F.; Clemmons, J.H.; Roeder, J.L.; Kanekal, S.G.; Manweiler, J.W.; Mitchell, D.G.; Gkioulidou, M.; Lanzerotti, L.J.; Spence, H.E.; Reeves, G.D.; Baker, D.N.;

YEAR: 2015     DOI: 10.1002/2014JA020859

Van Allen Probes

2014

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the out ...

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument

H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. O ...

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro;

YEAR: 2014     DOI: 10.1002/2014JA020374

inner magnetosphere; ion decay rates; Spacecraft measurements; Van Allen Probes

The role of small-scale ion injections in the buildup of Earth\textquoterights ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm

Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. Durin ...

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Sotirelis, T.; Mauk, B.; Lanzerotti, L.;

YEAR: 2014     DOI: 10.1002/2014JA020096

Geomagnetic storms; Ion injections; ring current; Van Allen Probes

Comparison of Energetic Electron Intensities Outside and Inside the Radiation Belts

The intensities of energetic electrons (~25 \textendash 800 keV) outside and inside Earth\textquoterights radiation belts are reported using measurements from THEMIS and Van Allen Probes during non-geomagnetic storm periods. Three intervals of current disruption/dipolarization events in August, 2013 were selected for comparison. The following results are obtained. (1) Phase space densities (PSDs) for the equatorially mirroring electron population at three values of the first adiabatic invariant (20, 70, and 200 MeV/G) at the ...

T. Y. Lui, A.; Mitchell, D.; Lanzerotti, L.;

YEAR: 2014     DOI: 10.1002/2014JA020049

Dipolarization; energetic electrons; Radiation belts; substorm; Van Allen Probes

Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission

He ions contribute to Earth\textquoterights ring current energy and species population density and are important in understanding ion transport and charge exchange processes in the inner magnetosphere. He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to 518 keV) morphology of ring curr ...

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob;

YEAR: 2014     DOI: 10.1002/2013GL059175

Van Allen Probes

Rotationally driven 'zebra stripes' in Earth's inner radiation belt

Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth\textquoterights rotation can change the velocity of trapped particles by only about 1\textendash2 kil ...

. Y. Ukhorskiy, A; Sitnov, M.; Mitchell, D.; Takahashi, K; Lanzerotti, L.; Mauk, B.;

YEAR: 2014     DOI: 10.1038/nature13046

Magnetospheric physics; Van Allen Probes

2013

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine \textquotedbllefthow space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,\textquotedblright and how the ring current is involved in radiation belt ...

Mitchell, D.; Lanzerotti, L.; Kim, C.; Stokes, M.; Ho, G.; Cooper, S.; UKHORSKIY, A; Manweiler, J.; Jaskulek, S.; Haggerty, D.; Brandt, P.; SITNOV, M; Keika, K.; Hayes, J.; Brown, L.; Gurnee, R.; Hutcheson, J.; Nelson, K.; Paschalidis, N.; Rossano, E.; Kerem, S.;

YEAR: 2013     DOI: 10.1007/s11214-013-9965-x

RBSP; Van Allen Probes

2006

Where Are the "Killer Electrons" of the Declining Phase of Solar Cycle 23

\textquotedblleftKiller electrons,\textquotedblright enhanced fluxes of radiation belt electrons in the magnetosphere\textendashespecially those at geosynchronous orbit (GEO)\textendashwere an important space weather phenomenon during the decline to minimum of the last 11-year solar cycle (1993\textendash1995). Indeed, the fluxes of these electrons were reported at the time to have significantly influenced the incidence of anomalies on numerous spacecraft, both commercial and national defense. The incidences of spacecraft an ...

Baker, Daniel; Lanzerotti, Louis;

YEAR: 2006     DOI: 10.1029/2006SW000259

Radiation belts

1973

ULF Geomagnetic Power near L = 4, 2. Temporal Variation of the Radial Diffusion Coefficient for Relativistic Electrons

Measurements at conjugate points on the ground near L = 4 of the power spectra of magnetic-field fluctuations in the frequency range 0.5 to 20 mHz are used as a means of estimating daily values for the relativistic-electron radial-diffusion coefficient DLL for two periods in December 1971 and January 1972. The values deduced for L-10 DLL show a strong variation with magnetic activity, as measured by the Fredricksburg magnetic index KFR. The radial-diffusion coefficient typically increases by a factor of \~10 for a unit incre ...

Lanzerotti, L.; Morgan, Caroline;

YEAR: 1973     DOI: 10.1029/JA078i022p04600

Radial Transport

1970

Radial Diffusion of Outer-Zone Electrons: An Empirical Approach to Third-Invariant Violation

The near-equatorial fluxes of outer-zone electrons (E>0.5 Mev and E>1.9 Mev) measured by an instrument on the satellite Explorer 15 following the geomagnetic storm of December 17\textendash18, 1962, are used to determine the electron radial diffusion coefficients and electron lifetimes as functions of L for selected values of the conserved first invariant \textmu. For each value of \textmu, the diffusion coefficient is assumed to be time-independent and representable in the form D = DnLn. The diffusion coefficients and lifet ...

Lanzerotti, L.; Maclennan, C.; Schulz, Michael;

YEAR: 1970     DOI: 10.1029/JA075i028p05351

Radial Transport



  1