Bibliography



Found 14 entries in the Bibliography.


Showing entries from 1 through 14


2019

Shorting Factor In-Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth\textquoterights Plasmasphere

Satellite-based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In-flight calibration of double-probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a paramet ...

Lejosne, Solène; Mozer, F.;

YEAR: 2019     DOI: 10.1029/2018EA000550

DC electric field; double probe instrument; electric drift; plasmasphere; shorting factor; Van Allen Probes

2018

Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop

It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large-scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F-18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potenti ...

Lejosne, ène; Kunduri, B.; Mozer, F.; Turner, D.;

YEAR: 2018     DOI: 10.1029/2018GL077969

adiabatic invariants; drift paths; electric fields; injections; SAPS; Van Allen Probes

Magnetic activity dependence of the electric drift below L=3

More than two years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L=3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the night-side. The amplitude of the slowdown is a function of L, local time MLT, and Kp, in a pattern consistent with the storm-time dynamics of the ionosphe ...

Lejosne, ène; Mozer, F.;

YEAR: 2018     DOI: 10.1029/2018GL077873

electric drift; electric field; Inner radiation belt; ionospheric disturbance dynamo; plasmasphere; subcorotation; Van Allen Probes

Reply to Comment by Nishimura Et Al.

Nishimura et al. (2010, https://doi.org/10.1126/science.1193186, 2011, https://doi.org/10.1029/2011JA016876, 2013, https://doi.org/10.1029/2012JA018242, and in their comment, hereafter called N18) have suggested that chorus waves interact with equatorial electrons to produce pulsating auroras. We agree that chorus can scatter electrons >10 keV, as do Time Domain Structures (TDSs). Lower-energy electrons occurring in pulsating auroras cannot be produced by chorus, but such electrons are scattered and accelerated by TDS. TDSs ...

Mozer, F.; Hull, A.; Lejosne, S.; . Y. Vasko, I;

YEAR: 2018     DOI: 10.1002/2018JA025218

chorus cannot precipitate electrons observed in pulsating auroras; time domain structures cause electron precipitation in pulsating auroras; Van Allen Probes

Coordinates for Representing Radiation Belt Particle Flux

Fifty years have passed since the parameter \textquotedblleftL-star\textquotedblright was introduced in geomagnetically trapped particle dynamics. It is thus timely to review the use of adiabatic theory in present-day studies of the radiation belts, with the intention of helping to prevent common misinterpretations and the frequent confusion between concepts like \textquotedblleftdistance to the equatorial point of a field line,\textquotedblright McIlwain\textquoterights L-value, and the trapped particle\textquoterights adia ...

Roederer, Juan; Lejosne, ène;

YEAR: 2018     DOI: 10.1002/2017JA025053

adiabatic coordinates; Radiation belts; Van Allen Probes

2017

Sub-Auroral Polarization Stream (SAPS) duration as determined from Van Allen Probe successive electric drift measurements

We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the Sub-Auroral Polarization Streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here, we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than two years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial loca ...

Lejosne, ène; Mozer, F.;

YEAR: 2017     DOI: 10.1002/2017GL074985

duration; electric drift measurements; magnetosphere-ionosphere coupling; SAPS; Van Allen Probes

Pulsating auroras produced by interactions of electrons and time domain structures

Previous evidence has suggested that either lower band chorus waves or kinetic Alfven waves scatter equatorial kilovolt electrons that propagate to lower altitudes where they precipitate or undergo further low-altitude scattering to make pulsating auroras. Recently, time domain structures (TDSs) were shown, both theoretically and experimentally, to efficiently scatter equatorial electrons. To assess the relative importance of these three mechanisms for production of pulsating auroras, 11 intervals of equatorial THEMIS data a ...

Mozer, F.; Agapitov, O.; Hull, A.; Lejosne, S.; . Y. Vasko, I;

YEAR: 2017     DOI: 10.1002/2017JA024223

pulsating auroras; Van Allen Probes; wave scattering

Model-observation comparison for the geographic variability of the plasma electric drift in the Earth\textquoterights innermost magnetosphere

Plasmaspheric rotation is known to lag behind Earth rotation. The causes for this corotation lag are not yet fully understood. We have used more than two years of Van Allen Probe observations to compare the electric drift measured below L~2 with the predictions of a general model. In the first step, a rigid corotation of the ionosphere with the solid Earth was assumed in the model. The results of the model-observation comparison are twofold: (1) radially, the model explains the average observed geographic variability of the ...

Lejosne, ène; Maus, Stefan; Mozer, F.;

YEAR: 2017     DOI: 10.1002/2017GL074862

corotation; electric field; Ionosphere; plasmasphere; thermosphere; Van Allen Probes; wind

2016

Typical values of the electric drift E \texttimes B / B 2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements

The electric drift E \texttimes B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L ~ 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependenc ...

Lejosne, ène; Mozer, F.;

YEAR: 2016     DOI: 10.1002/2016JA023613

electric drift; electric field; Inner radiation belt; plasmasphere; subcorotation; Van Allen Probes

Van Allen Probe measurements of the electric drift E \texttimes B/B2 at Arecibo\textquoterights L = 1.4 field line coordinate

We have used electric and magnetic measurements by Van Allen Probe B from 2013 to 2014 to examine the equatorial electric drift E \texttimes B/B2 at one field line coordinate set to Arecibo\textquoterights incoherent scatter radar location (L = 1.43). We report on departures from the traditional picture of corotational motion with the Earth in two ways: (1) the rotational angular speed is found to be 10\% smaller than the rotational angular speed of the Earth, in agreement with previous works on plasmaspheric notches, and (2 ...

Lejosne, Solène; Mozer, F.;

YEAR: 2016     DOI: 10.1002/2016GL069875

corotation; electric field; Inner radiation belt; Ionosphere; plasmasphere; Van Allen Probes

The \textquotedblleftzebra stripes\textquotedblright: An effect of F-region zonal plasma drifts on the longitudinal distribution of radiation belt particles

We examine a characteristic effect, namely, the ubiquitous appearance of structured peaks and valleys called zebra stripes in the spectrograms of energetic electrons and ions trapped in the inner belt below L ~ 3. We propose an explanation of this phenomenon as a purely kinematic consequence of particle drift velocity modulation caused by F region zonal plasma drifts in the ionosphere. In other words, we amend the traditional assumption that the electric field associated with ionospheric plasma drives trapped particle distri ...

Lejosne, Solène; Roederer, Juan;

YEAR: 2016     DOI: 10.1002/2015JA021925

electric field; Ionosphere; Inner radiation belt; Van Allen Probes; zebra stripes

2015

Time Domain Structures: what and where they are, what they do, and how they are made

Time Domain Structures (TDS) (electrostatic or electromagnetic electron holes, solitary waves, double layers, etc.) are >=1 msec pulses having significant parallel (to the background magnetic field) electric fields. They are abundant through space and occur in packets of hundreds in the outer Van Allen radiation belts where they produce magnetic-field-aligned electron pitch angle distributions at energies up to a hundred keV. TDS can provide the seed electrons that are later accelerated to relativistic energies by whistlers ...

Mozer, F.S.; Agapitov, O.V.; Artemyev, A.; Drake, J.F.; Krasnoselskikh, V.; Lejosne, S.; Vasko, I.;

YEAR: 2015     DOI: 10.1002/2015GL063946

Time Domain Structures; TDS

2014

Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers

The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth\textquoterights outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becom ...

Mozer, S.; Agapitov, O.; Krasnoselskikh, V.; Lejosne, S.; Reeves, D.; Roth, I.;

YEAR: 2014     DOI: 10.1103/PhysRevLett.113.035001

Van Allen Probes

Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers

The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth\textquoterights outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becom ...

Mozer, F.; Agapitov, O.; Krasnoselskikh, V.; Lejosne, S.; Reeves, G.; Roth, I.;

YEAR: 2014     DOI: 10.1103/PhysRevLett.113.035001



  1