Found 2 entries in the Bibliography.

Showing entries from 1 through 2


SC-associated electric field variations in the magnetosphere and ionospheric convective flows

We examine magnetic and electric field perturbations associated with a sudden commencement (SC), caused by an interplanetary (IP) shock passing over the Earth\textquoterights magnetosphere on 16 February 2013. The SC was identified in the magnetic and electric field data measured at THEMIS-E (THE-E: MLT = 12.4, L = 6.3), Van Allen Probe-A (VAP-A: MLT = 3.2, L = 5.1), and Van Allen Probe-B (VAP-B: MLT = 0.2. L= 4.9) in the magnetosphere. During the SC interval, THE-E observed a dawnward-then-duskward electric (E) field pertur ...

Kim, S.-I.; Kim, K.-H.; Kwon, H.-J.; Jin, H.; Lee, E.; Jee, G.; Nishitani, N.; Hori, T.; Lester, M.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2017JA024611

electric field; Sudden commencement; Van Allen Probes


Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions

Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches\textquoteright evolution. The patches were initially segmented from the dayside storm enhanced density plume (SED) at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary (PCB) due to pulsed dayside magnetop ...

Zhang, Q.; Lockwood, M.; Foster, J.; Zhang, S.; Zhang, B.; McCrea, I.; Moen, J.; Lester, M.; Ruohoniemi, Michael;

YEAR: 2015     DOI: 10.1002/2015JA021172

Dungey convection cycle; EISCAT radar; GPS TEC; polar cap patches