Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 506 entries in the Bibliography.
Showing entries from 1 through 50
2021 |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; KolmaÅ¡ová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
PreMevE Update: Forecasting Ultra-relativistic Electrons inside Earth’s Outer Radiation Belt Abstract Energetic electrons inside Earth’s Van Allen belts pose a major radiation threat to space-borne electronics that often play vital roles in modern society. Ultra-relativistic electrons with energies greater than or equal to two Megaelectron-volt (MeV) are of particular interest, and thus forecasting these ≥2 MeV electrons has significant meaning to all space sectors. Here we update the latest development of the predictive model for MeV electrons in the outer radiation belt. The new version, called PreMevE-2E, for ... Sinha, Saurabh; Chen, Yue; Lin, Youzuo; de Lima, Rafael; Published by: Space Weather Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021SW002773 Supervised Machine Learning; Van Allen electron radiation belt; Predicting ultra-relativistic electrons; Van Allen Probes |
PreMevE Update: Forecasting Ultra-relativistic Electrons inside Earth’s Outer Radiation Belt Abstract Energetic electrons inside Earth’s Van Allen belts pose a major radiation threat to space-borne electronics that often play vital roles in modern society. Ultra-relativistic electrons with energies greater than or equal to two Megaelectron-volt (MeV) are of particular interest, and thus forecasting these ≥2 MeV electrons has significant meaning to all space sectors. Here we update the latest development of the predictive model for MeV electrons in the outer radiation belt. The new version, called PreMevE-2E, for ... Sinha, Saurabh; Chen, Yue; Lin, Youzuo; de Lima, Rafael; Published by: Space Weather Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021SW002773 Supervised Machine Learning; Van Allen electron radiation belt; Predicting ultra-relativistic electrons; Van Allen Probes |
Global Survey of Electron Precipitation due to Hiss Waves in the Earth s Plasmasphere and Plumes Abstract We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5-year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation at L > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause ... Ma, Q.; Li, W.; Zhang, X.-J.; Bortnik, J.; Shen, X.-C.; Connor, H.; Boyd, A.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029644 electron precipitation; hiss wave; plasmasphere; plasmaspheric plume; Precipitating Energy Flux; Van Allen Probes Survey; Van Allen Probes |
Superposed Epoch Analysis of Dispersionless Particle Injections Inside Geosynchronous Orbit AbstractDispersionless injections, involving sudden, simultaneous flux enhancements of energetic particles over some broad range of energy, are a characteristic signature of the particles that are experiencing a significant acceleration and/or rapid inward transport at the leading edge of injections. We have statistically analyzed data from Van Allen Probes (also known as RBSP ) to reveal where the proton (H+) and electron (e–) dispersionless injections occur preferentially inside geosynchronous orbit and how they develop ... Motoba, T.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A; Lanzerotti, L.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029546 Dispersionless injections; substorms; inner magnetosphere; Van Allen Probes |
Observational evidence of the excitation of magnetosonic waves by an He ion ring distribution Abstract We report plasma wave observations of equatorial magnetosonic waves at integer harmonics of the local gyrofrequency of doubly-ionized helium (He). The waves were observed by Van Allen Probe A on 08 Feb 2014 when the spacecraft was in the afternoon magnetic local time sector near inside of the plasmasphere. Analysis of the complementary in-situ energetic ion measurements (1-300 keV) reveals the presence of a helium ion ring distribution centered near 30 keV. Theoretical linear growth rate calculations suggest that th ... Claudepierre, S.; Liu, X.; Chen, L.; Takahashi, K.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029532 magnetosonic waves; ion Bernstein waves; ring distribution; alpha particles; Plasma instability; ring current; Van Allen Probes |
Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ... Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029363 outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes |
Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ... Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029363 outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes |
ULF-modulation of whistler-mode waves in the inner magnetosphere during solar wind compression Abstract The solar wind plays important roles on terrestrial magnetosphere dynamics, including the particle population and plasma waves generation. Here we report an interesting event that ULF waves are enhanced right after solar wind compression and the compressional mode ULF wave subsequently modulates both the intensity and energy flux direction of whistler-mode waves. Quasi-periodic whistler-mode wave packets are observed around L=5.6 at noon sector by Van Allen Probes. Growth rate calculation demonstrates that the compr ... Shang, Xiongjun; Liu, Si; Chen, Lunjin; Gao, Zhonglei; Wang, Geng; He, Qian; Li, Tong; Xiao, Fuliang; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029353 |
ULF-modulation of whistler-mode waves in the inner magnetosphere during solar wind compression Abstract The solar wind plays important roles on terrestrial magnetosphere dynamics, including the particle population and plasma waves generation. Here we report an interesting event that ULF waves are enhanced right after solar wind compression and the compressional mode ULF wave subsequently modulates both the intensity and energy flux direction of whistler-mode waves. Quasi-periodic whistler-mode wave packets are observed around L=5.6 at noon sector by Van Allen Probes. Growth rate calculation demonstrates that the compr ... Shang, Xiongjun; Liu, Si; Chen, Lunjin; Gao, Zhonglei; Wang, Geng; He, Qian; Li, Tong; Xiao, Fuliang; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029353 |
Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ... Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029284 Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes |
Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ... Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029284 Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes |
Abstract Density irregularities near the plasmapause are commonly observed and play an important role in whistler-mode wave excitation and propagation. In this study, we report a frequency-dependent modulation event of whistler-mode waves by background density irregularities during a geomagnetic storm. Higher-frequency whistler waves (near 0.5 fce, where fce is the equatorial electron cyclotron frequency) are trapped in the density trough regions due to the small refractive index near the parallel direction, while lower-freq ... Liu, Xu; Gu, Wenyao; Xia, Zhiyang; Chen, Lunjin; Horne, Richard; Published by: Geophysical Research Letters Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093095 |
A Comparison of Radial Diffusion Coefficients in 1-D and 3-D Long-Term Radiation Belt Simulations AbstractRadial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the dataset used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), Brautigam et al. (2005), Ozeke et al. (2014), Ali et al. (2015); Ali et al. (2016); Ali (2016), and Liu et al. (2016) on long-term radiation belt modeling using the Versatile El ... Drozdov, A; Allison, H.; Shprits, Y; Elkington, S.R.; Aseev, N.A.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028707 Radiation belts; radial diffusion; VERB code; Van Allen Probes |
The Characteristics of Three-belt Structure of Sub-MeV Electrons in the Radiation Belts Abstract After the launch of Van Allen Probes, the three-belt structures of ultra-relativistic electrons are discovered. In this study, we investigate the three-belt structures of sub-MeV electrons, which may form under different mechanism compared with those of ultra-relativistic electrons and are worth in-depth analysis. Based on the differential flux data from MagEIS onboard RBSP-B satellite, we find 54 events, in which two comparable peaks of sub-MeV electron fluxes and a slot appear where there should be the outer radia ... Li, Yu-Xuan; Yue, Chao; Hao, Yi-Xin; Zong, Qiu-Gang; Zhou, Xu-Zhi; Fu, Sui-Yan; Chen, Xing-Ran; Zhao, Xing-Xin; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029385 |
Abstract We present a comparison of magnetospheric plasma mass/electron density observations during an 11-day interval which includes the geomagnetic storm of 22 June 2015. For this study we used: equatorial plasma mass density derived from geomagnetic field line resonances (FLRs) detected by Van Allen Probes and at the ground-based magnetometer networks EMMA and CARISMA; in situ electron density inferred by the Neural-network-based Upper hybrid Resonance Determination algorithm applied to plasma wave Van Allen Probes measur ... Vellante, M.; Takahashi, K.; Del Corpo, A.; Zhelavskaya, I.; Goldstein, J.; Mann, I.; Pietropaolo, E.; Reda, J.; Heilig, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029292 magnetoseismology; plasmasphere; Field line resonance; ground-based magnetometers; Van Allen Probes; Swarm satellites |
Solar Energetic Proton Access to the Inner Magnetosphere during the 7-8 September 2017 event Abstract The access of solar energetic protons into the inner magnetosphere on 7-8 September 2017 is investigated by following reversed proton trajectories to compute the proton cutoff energy using the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The cutoff energies for protons coming from the west and east direction, the minimum and maximum cutoff energy respectively, are calculated every five minutes along the orbit of Van Allen Probes using TS07 and the Lyon-Fedder-Mobarry (LFM) MHD magnetic field model. The r ... Li, Zhao; Engel, Miles; Hudson, Mary; Kress, Brian; Patel, Maulik; Qin, Murong; Selesnick, Richard; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029107 |
Abstract Following the end of the Van Allen Probes mission, the Arase satellite offers a unique opportunity to continue in-situ radiation belt and ring current particle measurements into the next solar cycle. In this study we compare spin-averaged flux measurements from the MEPe, HEP-L, HEP-H, and XEP-SSD instruments on Arase with those from the MagEIS and REPT instruments on the Van Allen Probes, calculating Pearson correlation coefficient and the mean ratio of fluxes at L* conjunctions between the spacecraft. Arase and Van ... Szabó-Roberts, Mátyás; Shprits, Yuri; Allison, Hayley; Vasile, Ruggero; Smirnov, Artem; Aseev, Nikita; Drozdov, Alexander; Miyoshi, Yoshizumi; Claudepierre, Seth; Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Takashima, Takeshi; Higashio, Nana; Hori, Tomo; Keika, Kunihiro; Imajo, Shun; Shinohara, Iku; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028929 |
Abstract Equatorial magnetosonic waves, together with chorus and plasmaspheric hiss, play key roles in the dynamics of energetic electron fluxes in the magnetosphere. Numerical models, developed following a first principles approach, that are used to study the evolution of high energy electron fluxes are mainly based on quasilinear diffusion. The application of such numerical codes requires statistical models for the distribution of key magnetospheric wave modes to estimate the appropriate diffusion coefficients. These waves ... Boynton, R.; Walker, S.; Aryan, H.; Hobara, Y.; Balikhin, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028439 magnetosonic waves; Machine learning; NARMAX; Van Allen Probes |
Observation of unusual chorus elements by Van Allen Probes AbstractWhistler mode chorus waves play an important role in the radiation belt dynamics, which usually appear as discrete elements with frequency sweeping. Finer structure analysis shows that a chorus element is composed of several frequency-sweeping subelements, and such two-level structures can be successfully reproduced by modeling based on nonlinear theories. Previous observations and models suggest that an element and its subelements should have the same frequency-sweep direction. However, we here present two unexpecte ... Liu, Si; Gao, Zhonglei; Xiao, Fuliang; He, Qian; Li, Tong; Shang, Xiongjun; Zhou, Qinghua; Yang, Chang; Zhang, Sai; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029258 |
Observation of unusual chorus elements by Van Allen Probes AbstractWhistler mode chorus waves play an important role in the radiation belt dynamics, which usually appear as discrete elements with frequency sweeping. Finer structure analysis shows that a chorus element is composed of several frequency-sweeping subelements, and such two-level structures can be successfully reproduced by modeling based on nonlinear theories. Previous observations and models suggest that an element and its subelements should have the same frequency-sweep direction. However, we here present two unexpecte ... Liu, Si; Gao, Zhonglei; Xiao, Fuliang; He, Qian; Li, Tong; Shang, Xiongjun; Zhou, Qinghua; Yang, Chang; Zhang, Sai; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029258 |
Origin of Electron Boomerang Stripes: Statistical Study Abstract In the outer radiation belt, localized ULF waves can interact with energetic electrons by drift resonance, leading to quasiperiodic oscillations. The oscillations in the pitch angle spectrum can be characterized by either boomerang-shaped or straight stripes. Previous studies have shown that boomerang-shaped stripes evolve from straight ones when electrons drift away from the localized wave interaction region. Based on the time-of-flight technique on the pitch angle-dependent drift velocity, the origin can be remote ... Zhao, X.; Hao, Y.; Zong, Q.; Zhou, X.; Yue, Chao; Chen, X.; Liu, Y.; Liu, Z.-Y.; Blake, J.; Claudepierre, S.; Reeves, G.; Published by: Geophysical Research Letters Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093377 Localized ULF waves; Energetic Elctrons; drift resonance; Time-of-flight Technique; source region; boomerang-shaped stripes; Van Allen Probes |
Origin of Electron Boomerang Stripes: Statistical Study Abstract In the outer radiation belt, localized ULF waves can interact with energetic electrons by drift resonance, leading to quasiperiodic oscillations. The oscillations in the pitch angle spectrum can be characterized by either boomerang-shaped or straight stripes. Previous studies have shown that boomerang-shaped stripes evolve from straight ones when electrons drift away from the localized wave interaction region. Based on the time-of-flight technique on the pitch angle-dependent drift velocity, the origin can be remote ... Zhao, X.; Hao, Y.; Zong, Q.; Zhou, X.; Yue, Chao; Chen, X.; Liu, Y.; Liu, Z.-Y.; Blake, J.; Claudepierre, S.; Reeves, G.; Published by: Geophysical Research Letters Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093377 Localized ULF waves; Energetic Elctrons; drift resonance; Time-of-flight Technique; source region; boomerang-shaped stripes; Van Allen Probes |
A Multi-instrument Study of a Dipolarization Event in the Inner Magnetosphere Abstract A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on 22 September 2018. The spacecraft were located in the inner magnetosphere at L ∼ 6 − 7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was ∼ 1RE. Gradual dipolarization or an increase of the northward component BZ of the background field occurred on a timescale of minutes. Exploration of energization and Radi ... Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Cohen, I.; Cooper, M.; Ergun, R.; Farrugia, C.; Fennell, J.; Fuselier, S.; Gkioulidou, M.; Khotyaintsev, Yu.; Lindqvist, P.-A.; Matsuoka, A.; Russell, C.; Shoji, M.; Strangeway, R.; Turner, D.; Vaith, H.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029294 Dipolarization; inner magnetosphere; Multiple Scale Dynamics; Van Allen Probes |
A Multi-instrument Study of a Dipolarization Event in the Inner Magnetosphere Abstract A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on 22 September 2018. The spacecraft were located in the inner magnetosphere at L ∼ 6 − 7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was ∼ 1RE. Gradual dipolarization or an increase of the northward component BZ of the background field occurred on a timescale of minutes. Exploration of energization and Radi ... Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Cohen, I.; Cooper, M.; Ergun, R.; Farrugia, C.; Fennell, J.; Fuselier, S.; Gkioulidou, M.; Khotyaintsev, Yu.; Lindqvist, P.-A.; Matsuoka, A.; Russell, C.; Shoji, M.; Strangeway, R.; Turner, D.; Vaith, H.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029294 Dipolarization; inner magnetosphere; Multiple Scale Dynamics; Van Allen Probes |
A Multi-instrument Study of a Dipolarization Event in the Inner Magnetosphere Abstract A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on 22 September 2018. The spacecraft were located in the inner magnetosphere at L ∼ 6 − 7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was ∼ 1RE. Gradual dipolarization or an increase of the northward component BZ of the background field occurred on a timescale of minutes. Exploration of energization and Radi ... Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Cohen, I.; Cooper, M.; Ergun, R.; Farrugia, C.; Fennell, J.; Fuselier, S.; Gkioulidou, M.; Khotyaintsev, Yu.; Lindqvist, P.-A.; Matsuoka, A.; Russell, C.; Shoji, M.; Strangeway, R.; Turner, D.; Vaith, H.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029294 Dipolarization; inner magnetosphere; Multiple Scale Dynamics; Van Allen Probes |
A Statistical Study of Lower Hybrid Waves In the Earth’s Magnetosphere by Van Allen Probes Abstract The lower hybrid (LH) waves are electrostatic emissions near the LH resonant frequency. They propagate perpendicularly with a small wavelength comparable to Larmor radius of thermal particles and can heat both ions and electrons. In this paper, we statistically study the global distribution of LH waves in the inner magnetosphere by using Van Allen Probes observation from 2012 to 2018. We find that (1) LH waves are commonly observed in the inner magnetosphere. Most LH waves are confined near the magnetic equator with ... Liu, Xu; Chen, Lunjin; Ma, Qianli; Published by: Geophysical Research Letters Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093168 |
Rapid injections of MeV electrons and extremely fast step-like outer radiation belt enhancements Abstract Rapid injection of MeV electrons associated with strong substorm dipolarization has been suggested as a potential explanation for some radiation belt enhancement events. However, it has been difficult to quantify the contribution of MeV electron injections to radiation belt enhancements. This paper presents two isolated MeV electron injection events for which we quite precisely quantify how the entire outer-belt immediately changed with the injections. Tracking detailed outer-belt evolution observed by Van Allen Pro ... Kim, H.-J.; Lee, D.-Y.; Wolf, R.; Bortnik, J.; Kim, K.-C.; Lyons, L.; Choe, W.; Noh, S.-J.; Choi, K.-E.; Yue, C.; Li, J.; Published by: Geophysical Research Letters Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093151 Radiation belt enhancement; Relatvistic electrons; substorm injection; Step-like; Extremely fast; Van Allen Probes |
Modeling the Dynamics of Radiation Belt Electrons with Source and Loss Driven by the Solar Wind Abstract A radial diffusion model directly driven by the solar wind is developed to reproduce MeV electron variations between L=2-12 (L is L* in this study) from October 2012 to April 2015. The radial diffusion coefficient, internal source rate, quick loss due to EMIC waves, and slow loss due to hiss waves are all expressed in terms of the solar wind speed, dynamic pressure, and interplanetary magnetic field (IMF). The model achieves a prediction efficiency (PE) of 0.45 at L=5 and 0.51 at L=4 after converting the electron ph ... Xiang, Zheng; Li, Xinlin; Kapali, Sudha; Gannon, Jennifer; Ni, Binbin; Zhao, Hong; Zhang, Kun; Khoo, Leng; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028988 Radiation belt; Solar wind; flux prediction; radial diffusion; magnetopause shadowing; wave-particle interactions; Van Allen Probes |
Modeling the Dynamics of Radiation Belt Electrons with Source and Loss Driven by the Solar Wind Abstract A radial diffusion model directly driven by the solar wind is developed to reproduce MeV electron variations between L=2-12 (L is L* in this study) from October 2012 to April 2015. The radial diffusion coefficient, internal source rate, quick loss due to EMIC waves, and slow loss due to hiss waves are all expressed in terms of the solar wind speed, dynamic pressure, and interplanetary magnetic field (IMF). The model achieves a prediction efficiency (PE) of 0.45 at L=5 and 0.51 at L=4 after converting the electron ph ... Xiang, Zheng; Li, Xinlin; Kapali, Sudha; Gannon, Jennifer; Ni, Binbin; Zhao, Hong; Zhang, Kun; Khoo, Leng; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028988 Radiation belt; Solar wind; flux prediction; radial diffusion; magnetopause shadowing; wave-particle interactions; Van Allen Probes |
Abstract We compare ESA PROBA-V observations of electron flux at LEO with those from the NASA Van Allen Probes mostly at MEO for October 2013. Dropouts are visible at all energy during 4 storms from both satellites. Equatorial trapped electron fluxes are higher than at LEO by 102 (<1 MeV) to 105 (>2.5 MeV). We observe a quite isotropic structure of the outer belt during quiet times, contrary to the inner belt, and pitch angle dependence of high energy injection. We find very good overlap of the outer belt at MEO and LEO at â ... Pierrard, V.; Ripoll, J.-F.; Cunningham, G.; Botek, E.; Santolik, O.; Thaller, S.; Kurth, W.; Cosmides, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028850 Radiation belts; relativistic electrons; Geomagnetic storms; energetic particles; Van Allen Probes |
Abstract This paper examines the rapid losses and acceleration of trapped relativistic and ultrarelativistic electron populations in the Van Allen radiation belt during the September 7-9, 2017, geomagnetic storm. By analyzing the dynamics of the last closed drift shell (LCDS) and the electron flux and phase space density (PSD), we show that the electron dropouts are consistent with magnetopause shadowing and outward radial diffusion to the compressed LCDS. During the recovery phase an in-bound pass of Van Allen Probe A shows ... Olifer, L.; Mann, I.; Ozeke, L.; Morley, S.; Louis, H.; Published by: Geophysical Research Letters Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL092351 Van Allen Probes; magnetopause shadowing; ULF wave radial diffusion; electron phase space density |
Sustained oxygen spectral gaps and their dynamic evolution in the inner magnetosphere Abstract Van Allen Probes observations of ion spectra often show a sustained gap within a very narrow energy range throughout the full orbit. To understand their formation mechanism, we statistically investigate the characteristics of the narrow gaps for oxygen ions and find that they are most frequently observed near the noon sector with a peak occurrence rate of over 30\%. The magnetic moment (μ) of the oxygen ions in the gap shows a strong dependence on magnetic local time (MLT), with higher and lower μ in the morning a ... Yue, Chao; Zhou, Xu-Zhi; Bortnik, Jacob; Zong, Qiu-Gang; Li, Yuxuan; Ren, Jie; Reeves, Geoffrey; Spence, Harlan; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029092 oxygen spectral gaps; corotational drift resonance; sustained gaps; drainage void; test particle simulations; Van Allen Probes |
Characteristics of low-harmonic magnetosonic waves in the Earth’s inner magnetosphere Abstract Magnetosonic (MS) waves are electromagnetic waves that play important roles in the acceleration and scattering of radiation belt electrons. However, previous statistical analyses of the global MS wave distribution were mainly restricted to magnetic field measurements. In this study, we first report a low-harmonic MS wave event observed only by the electric field instrument of Van Allen Probes. The MS wave frequencies follow the local proton gyrofrequency (fcp), which suggests the characteristics of nearly local gene ... Teng, S.; Liu, N.; Ma, Q.; Tao, X.; Published by: Geophysical Research Letters Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093119 Low-frequency magnetosonic wave; wave generation; Magnetosonic wave spectra; Van Allen Probes |
Abstract Auroral kilometric radiations (AKR) are strong radio emission phenomena, and can prduce significant acceleration or scattering of radiation belt electrons. The variation of AKR wave amplitude with the latitude (λ) has not been reported so far owing to lack of measurements. Here, using observations of the Arase satellite and Van Allen Probes from 23 March 2017 to 31 July 2019, we present the first statistical study on the AKR electric field amplitude (Et) in the radiation belts for |λ| = 0° − 40° and L-shell L ... Zhang, Sai; Liu, Si; Li, Wentao; He, Yihua; Yang, Qiwu; Xiao, Fuliang; Kumamoto, Atsushi; Miyoshi, Yoshizumi; Nakamura, Yosuke; Tsuchiya, Fuminori; Kasahara, Yoshiya; Shinohara, Iku; Published by: Geophysical Research Letters Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL092805 AKR; wave amplitude; geomagnetic latitude; Radiation belt; field-aligned; Van Allen Probes |
Abstract Auroral kilometric radiations (AKR) are strong radio emission phenomena, and can prduce significant acceleration or scattering of radiation belt electrons. The variation of AKR wave amplitude with the latitude (λ) has not been reported so far owing to lack of measurements. Here, using observations of the Arase satellite and Van Allen Probes from 23 March 2017 to 31 July 2019, we present the first statistical study on the AKR electric field amplitude (Et) in the radiation belts for |λ| = 0° − 40° and L-shell L ... Zhang, Sai; Liu, Si; Li, Wentao; He, Yihua; Yang, Qiwu; Xiao, Fuliang; Kumamoto, Atsushi; Miyoshi, Yoshizumi; Nakamura, Yosuke; Tsuchiya, Fuminori; Kasahara, Yoshiya; Shinohara, Iku; Published by: Geophysical Research Letters Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL092805 AKR; wave amplitude; geomagnetic latitude; Radiation belt; field-aligned; Van Allen Probes |
Harmonization of RBSP and Arase energetic electron measurements utilizing ESA radiation monitor data Abstract Accurate measurements of trapped energetic electron fluxes are of major importance for the studies of the complex nature of radiation belts and the characterization of space radiation environment. The harmonization of measurements between different instruments increase the accuracy of scientific studies and the reliability of data-driven models that treat the specification of space radiation environment. An inter-calibration analysis of the energetic electron flux measurements of the Magnetic Electron Ion Spectromet ... Sandberg, I.; Jiggens, P.; Evans, H.; Papadimitriou, C.; Aminalragia–Giamini, S.; Katsavrias, Ch.; Boyd, A.; O’Brien, T.; Higashio, N.; Mitani, T.; Shinohara, I.; Miyoshi, Y.; Baker, D.; Daglis, I.; Published by: Space Weather Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020SW002692 Radiation belt; calibration; data harmonization; space radiation environment; energetic electrons; Van Allen Probes |
Abstract We investigate relativistic electron precipitation events detected by POES in low-Earth orbit in close conjunction with Van Allen Probe A observations of EMIC waves near the geomagnetic equator. We show that the occurrence rate of > 0.7 MeV electron precipitation recorded by POES during those times strongly increases, reaching statistically significant levels when the minimum electron energy for cyclotron resonance with hydrogen or helium band EMIC waves at the equator decreases below ≃ 1.0 − 2.5 MeV, as expecte ... Zhang, X.-J.; Mourenas, D.; Shen, X.-C.; Qin, M.; Artemyev, A.; Ma, Q.; Li, W.; Hudson, M.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029193 EMIC waves; relativistic electron precipitation; minimum resonant energy; Van Allen Probes; POES; Radiation belts |
Abstract Drift-bounce resonance between ultra-low-frequency (ULF) waves and ring current ions has been widely studied, because of its important role in ring current acceleration and relevant geomagnetic activities. To identify drift-bounce resonance in observations, 180° phase shifts across resonant pitch angle have been proposed as diagnostic signatures. This study, however, presents observations that suggest this criterion may be invalid when phase space density (PSD) distributions vary non-monochromatically with energy. ... Li, Xing-Yu; Liu, Zhi-Yang; Zong, Qiu-Gang; Zhou, Xu-Zhi; Hao, Yi-Xin; Rankin, Robert; Zhang, Xiao-Xin; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029025 ring current; ultra-low-frequency waves; drift-bounce resonance; Van Allen Probes |
Abstract Drift-bounce resonance between ultra-low-frequency (ULF) waves and ring current ions has been widely studied, because of its important role in ring current acceleration and relevant geomagnetic activities. To identify drift-bounce resonance in observations, 180° phase shifts across resonant pitch angle have been proposed as diagnostic signatures. This study, however, presents observations that suggest this criterion may be invalid when phase space density (PSD) distributions vary non-monochromatically with energy. ... Li, Xing-Yu; Liu, Zhi-Yang; Zong, Qiu-Gang; Zhou, Xu-Zhi; Hao, Yi-Xin; Rankin, Robert; Zhang, Xiao-Xin; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029025 ring current; ultra-low-frequency waves; drift-bounce resonance; Van Allen Probes |
A comparative study on the distributions of incoherent and coherent plasmaspheric hiss Abstract We perform a comparative study on the distributions of incoherent and coherent plasmaspheric hiss, based on the Van Allen Probe data. The statistics show that incoherent hiss ( ∼10–20 pT) is widely distributed in dayside plasmasphere, with peak frequencies below 500 Hz; intense coherent hiss (amplitudes up to 80 pT) occurs in outer plasmasphere of L > 4 (L denotes the L-shell.), whose frequency increases with ambient magnetic field significantly. The Poynting flux analysis indicates that incoherent hiss generall ... He, Zhaoguo; Yu, Jiang; Li, Kun; Liu, Nigang; Chen, Zewen; Cui, Jun; Published by: Geophysical Research Letters Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL092902 |
A comparative study on the distributions of incoherent and coherent plasmaspheric hiss Abstract We perform a comparative study on the distributions of incoherent and coherent plasmaspheric hiss, based on the Van Allen Probe data. The statistics show that incoherent hiss ( ∼10–20 pT) is widely distributed in dayside plasmasphere, with peak frequencies below 500 Hz; intense coherent hiss (amplitudes up to 80 pT) occurs in outer plasmasphere of L > 4 (L denotes the L-shell.), whose frequency increases with ambient magnetic field significantly. The Poynting flux analysis indicates that incoherent hiss generall ... He, Zhaoguo; Yu, Jiang; Li, Kun; Liu, Nigang; Chen, Zewen; Cui, Jun; Published by: Geophysical Research Letters Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL092902 |
In situ Observations of Whistler-mode Chorus Waves Guided by Density Ducts Abstract In this paper, we report the proof of the existence of density ducts in the Earth’s magnetosphere by studying in situ observations of whistler-mode chorus waves using NASA’s Van Allen Probe-A data. Chorus waves, originally excited inside the density ducts with wave normal angles (WNAs) smaller than the Gendrin angle at near equator region, are efficiently confined to a limited area inside density ducts (i.e., ducted regions), and remain with small WNAs as they propagate towards high latitudes. The ducted region ... Chen, Rui; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Tsurutani, Bruce; Li, Wen; Ni, Binbin; Wang, Shui; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028814 Radiation belt; Chorus wave; density duct; ducted region; Van Allen Probes |
Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ... Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.; Published by: Geophysical Research Letters Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL091564 electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes |
Determining the Temporal and Spatial Coherence of Plasmaspheric Hiss Waves in the Magnetosphere Abstract Plasmaspheric hiss is one of the most important plasma waves in the Earth s magnetosphere to contribute to radiation belt dynamics by pitch-angle scattering energetic electrons via wave-particle interactions. There is growing evidence that the temporal and spatial variability of wave-particle interactions are important factors in the construction of diffusion-based models of the radiation belts. Hiss amplitudes are thought to be coherent across large distances and on long timescales inside the plasmapause, which mea ... Zhang, Shuai; Rae, Jonathan; Watt, Clare; Degeling, Alexander; Tian, Anmin; Shi, Quanqi; Shen, Xiao-Chen; Smith, Andy; Wang, Mengmeng; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028635 |
Periodic Rising and Falling Tone ECH Waves from Van Allen Probes Observations AbstractElectron cyclotron harmonic (ECH) waves are known to precipitate plasma sheet electrons into the upper atmosphere and generate diffuse aurorae. In this study, we report quasi-periodic rising (3 events) and falling tone (22 events) ECH waves observed by Van Allen Probes, and evaluate their properties. These rising and falling tone ECH waves prefer to occur during quiet geomagnetic conditions over the dusk to midnight sector in relatively high-density (10–80 cm-3) regions. Their repetition periods increase with incre ... Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Published by: Geophysical Research Letters Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL091330 ECH wave; falling tone; rising tone; Magnetosphere; plasma wave; Van Allen Probes |
The First Observation of N+ Electromagnetic Ion Cyclotron Waves Abstract Observations from past space missions report on the significant abundance of N+, in addition to those of O+, outflowing from the terrestrial ionosphere and populating the near-Earth region. However, instruments on board current space missions lack the mass resolution to distinguish between the two, and often the role of N+ in regulating the magnetosphere dynamics, is lumped together with that of O+ ions. For instance, our understanding regarding the role of electromagnetic ion cyclotron (EMIC) waves in controlling t ... Published by: Journal of Geophysical Research: Space Physics Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028716 electromagnetic ion cyclotron waves; heavy ions; Van Allen Probes; N+ EMIC Wave; Wave-particle interaction; inner magnetosphere |
AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions wer ... Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028484 quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave |
AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions wer ... Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028484 quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave |
2020 |
Using seven years of data from the HOPE instrument on the Van Allen Probes, equatorial pitch angle distributions (PADs) of 1 – 50 keV electrons in Earth s inner magnetosphere are investigated statistically. An empirical model of electron equatorial PADs as a function of radial distance, magnetic local time, geomagnetic activity, and electron energy is constructed using the method of Legendre polynomial fitting. Model results show that most equatorial PADs of 1 – 10s of keV electrons in Earth s inner magnetosphere are pan ... Zhao, H.; Friedel, R.; Chen, Y.; Baker, D.; Li, X.; Malaspina, D.; Larsen, B.; Skoug, R.; Funsten, H.; Reeves, G.; Boyd, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028322 Pitch angle distribution; energetic electrons; Earth s inner magnetosphere; Anisotropy; Chorus wave; statistical analysis; Van Allen Probes |