Bibliography



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2018

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle ...

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; . Y. Drozdov, A; Villa, J.; . Y. Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; . Y. Ukhorskiy, A;

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

2017

Effects of whistler mode hiss waves in March 2013

We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 ...

Ripoll, J.-F.; Santol?k, O.; Reeves, G.; Kurth, W.; Denton, M.; Loridan, V.; Thaller, S.; Kletzing, C.; Turner, D.;

YEAR: 2017     DOI: 10.1002/2017JA024139

diffusion coefficients; electron lifetimes; energy-structure; Radiation belts; Van Allen Probes; Whistler-mode hiss

2016

On the Time Needed to Reach an Equilibrium Structure of the Radiation Belts

In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen ...

Ripoll, J.; Loridan, V.; Cunningham, G.; Reeves, G.; . Y. Shprits, Y;

YEAR: 2016     DOI: 10.1002/2015JA022207

Radiation belts; Van Allen Probes

Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to t ...

Ripoll, J.; Reeves, G.; Cunningham, G.; Loridan, V.; Denton, M.; ik, O.; Kurth, W.; Kletzing, C.; Turner, D.; Henderson, M.; . Y. Ukhorskiy, A;

YEAR: 2016     DOI: 10.1002/2016GL068869

electron lifetimes; electron losses; hiss waves; Radiation belts; Slot region; Van Allen Probes; wave particle interactions



  1