Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2020 |
On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long ... Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028098 Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes |
2019 |
Based on the statistical data measured by Van Allen Probes from 2012 to 2016, we analyzed the effects of solar wind plasma flow and interplanetary magnetic field (IMF) on the spatial distribution of Earth\textquoterights radiation belt electrons (>100 keV). The statistical results indicate that the increases in solar wind plasma density and flow speed can exert different effects on the spatial structure of the radiation belts. The high solar wind plasma density (>6 cm-3)/flow pressure (>2.5 nPa) and a large southward IMF (Bz ... Li, L.Y.; Yang, S.S.; Cao, J.B.; Yu, J.; Luo, X.Y.; Blake, J.B.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2019 YEAR: 2019   DOI: 10.1029/2019JA027284 Changes in The Spatial Structure of Earth\textquoterights Radiation Belts; Increase in Solar Wind Plasma Density; Increase in Solar Wind Plasma Flow Speed; Northward Interplanetary Magnetic Field; Southward interplanetary magnetic field; Van Allen Probes |
2015 |
\textquotedblleftTrunk-like\textquotedblright heavy ion structures observed by the Van Allen Probes Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report \textquotedbllefttrunk-like\textquotedblright ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant\textquoterights trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energ ... Zhang, J.-C.; Kistler, L.; Spence, H.; Wolf, R.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B.; Niehof, J.; MacDonald, E.; Friedel, R.; Ferradas, C.; Luo, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2015 YEAR: 2015   DOI: 10.1002/2015JA021822 inner magnetosphere; ion injection; Ion structure; magnetic cloud; magnetic storm; Van Allen Probes |
Ecohydrologic role of solar radiation on landscape evolution Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspec ... Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, Homero; Vivoni, Enrique; Bras, Rafael; Published by: Water Resources Research Published on: 02/2015 YEAR: 2015   DOI: 10.1002/wrcr.v51.210.1002/2014WR016169 catchment evolution; ecohydrology; geomorphology; landscape evolution; solar radiation; vegetation dynamics |
1