Bibliography



Found 10 entries in the Bibliography.


Showing entries from 1 through 10


2020

Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit

Abstract Forecasting relativistic electron fluxes at geostationary Earth orbit (GEO) has been a long-term goal of the scientific community, and significant advances have been made in the past, but the relation to the interior of the radiation belts, that is, to lower L-shells, is still not clear. In this work we have identified 60 relativistic electron enhancement events at GEO to study the radial response of outer belt fluxes and the correlation between the fluxes at GEO and those at lower L-shells. The enhancement events o ...

Pinto, Victor; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

YEAR: 2020     DOI: 10.1029/2019JA027660

Radiation belts; relativistic electrons; geosynchronous orbit; Outer Belt; flux correlation; enhancement events; Van Allen Probes

2019

Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss

Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in-between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 ...

Pinto, V.; Mourenas, D.; Bortnik, J.; Zhang, X.-J.; Artemyev, A.; Moya, P.; Lyons, L.;

YEAR: 2019     DOI: 10.1029/2019JA026509

Decay rates; EMIC waves; MeV Electron Decay; Plasmaspheric Hiss; Radiation belts; Remnant Belt; Van Allen Probes

A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail

To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen ...

Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.;

YEAR: 2019     DOI: 10.1029/2018JA025886

EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes

2018

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location ...

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

2015

Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts

We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds vary ...

Lyons, L.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M.; Chen, S.; Hampton, D.; Bristow, W.; Ruohoniemi, J.; Nishitani, N.; Donovan, E.; Angelopoulos, V.;

YEAR: 2015     DOI: 10.1002/2015JA021023

aurora; convection; Flow bursts; plasma sheet; SAPS; streamers

2014

Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS

Bursty enhancements of hot electrons (≳0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon\textquoterights Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause a ...

Wang, Chih-Ping; Xing, Xiaoyan; Nakamura, T.; Lyons, Larry; Angelopoulos, Vassilis;

YEAR: 2014     DOI: 10.1002/2014JA020603

ARTEMIS; hot electrons; magnetosheath

Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows

While nightside subauroral proton aurora shows rapid temporal variations, the cause of this variability has rarely been investigated. Using well-coordinated observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imagers, THEMIS satellites in the equatorial magnetosphere, and the low-altitude NOAA 17 satellite, we examined the rapid temporal evolution of subauroral proton aurora in the premidnight sector. An isolated proton aurora occurred soon after an auroral poleward bounda ...

Nishimura, Y.; Bortnik, J.; Li, W.; Lyons, L.; Donovan, E.; Angelopoulos, V.; Mende, S.;

YEAR: 2014     DOI: 10.1002/2014JA020029

EMIC waves; plasma sheet flow burst; plasmasphere; proton aurora; THEMIS ASI; THEMIS satellite

2007

Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms

[1] Energetic electrons (>=50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (>=150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), a ...

Thorne, R.; . Y. Shprits, Y; Meredith, N.; Horne, R.; Li, W.; Lyons, L.;

YEAR: 2007     DOI: 10.1029/2006JA012176

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

1973

Equilibrium Structure of Radiation Belt Electrons

The detailed quiet time structure of energetic electrons in the earth\textquoterights radiation belts is explained on the basis of a balance between pitch angle scattering loss and inward radial diffusion from an average outer zone source. Losses are attributed to a combination of classical Coulomb scattering at low L and whistler mode turbulent pitch angle diffusion throughout the outer plasmasphere. Radial diffusion is driven by substorm associated fluctuations of the magnetospheric convection electric field.

Lyons, Lawrence; Thorne, Richard;

YEAR: 1973     DOI: 10.1029/JA078i013p02142

Local Loss due to VLF/ELF/EMIC Waves

1972

Parasitic Pitch Angle Diffusion of Radiation Belt Particles by Ion Cyclotron Waves

The resonant pitch angle scattering of protons and electrons by ion cyclotron turbulence is investigated. The analysis is analogous to that recently performed for electron interactions with whistler mode waves. The role played by the intense band of ion cyclotron waves, predicted to be generated just within the plasmapause during the decay of the magnetospheric ring current, is evaluated in detail. Loss rates resulting from parasitic interactions with this turbulence are determined for energetic protons and relativistic elec ...

Lyons, Lawrence; Thorne, Richard;

YEAR: 1972     DOI: 10.1029/JA077i028p05608

Local Loss due to VLF/ELF/EMIC Waves



  1