Bibliography



Found 1206 entries in the Bibliography.


Showing entries from 1 through 50


2021

Energetic Electron Precipitation Observed by FIREBIRD-II Potentially Driven by EMIC Waves: Location, Extent, and Energy Range from a Multi-Event Analysis

Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ...

Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.;

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091564

electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes

Energetic Electron Precipitation Observed by FIREBIRD-II Potentially Driven by EMIC Waves: Location, Extent, and Energy Range from a Multi-Event Analysis

Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ...

Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.;

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091564

electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes

Energetic Electron Precipitation Observed by FIREBIRD-II Potentially Driven by EMIC Waves: Location, Extent, and Energy Range from a Multi-Event Analysis

Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ...

Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.;

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091564

electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes

Determining the Temporal and Spatial Coherence of Plasmaspheric Hiss Waves in the Magnetosphere

Abstract Plasmaspheric hiss is one of the most important plasma waves in the Earth s magnetosphere to contribute to radiation belt dynamics by pitch-angle scattering energetic electrons via wave-particle interactions. There is growing evidence that the temporal and spatial variability of wave-particle interactions are important factors in the construction of diffusion-based models of the radiation belts. Hiss amplitudes are thought to be coherent across large distances and on long timescales inside the plasmapause, which mea ...

Zhang, Shuai; Rae, Jonathan; Watt, Clare; Degeling, Alexander; Tian, Anmin; Shi, Quanqi; Shen, Xiao-Chen; Smith, Andy; Wang, Mengmeng;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028635

Van Allen Probes

A Case Study of Transversely Heated Low-Energy Helium Ions by EMIC Waves in the Plasmasphere

Abstract The Van Allen Probe A spacecraft observed strong ∼0.5-Hz helium (He+) band and weak ∼0.8-Hz hydrogen (H+) band EMIC waves on April 17, 2018, at L = ∼4.5–5.2, in the dawn sector, near the magnetic equator, and close to the plasmapause. We examined low-energy ion fluxes observed by the Helium Oxygen Proton and Electron (HOPE) instrument onboard Van Allen Probe A during the wave interval and found that low-energy He+ flux (<10 eV) enhancements occur nearly simultaneously with He-band and H-band EMIC wave pow ...

Kim, Khan-Hyuk; Kwon, Hyuck-Jin; Lee, Junhyun; Jin, Ho; Seough, Jungjoon;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028560

Van Allen Probes

Periodic Rising and Falling Tone ECH Waves from Van Allen Probes Observations

AbstractElectron cyclotron harmonic (ECH) waves are known to precipitate plasma sheet electrons into the upper atmosphere and generate diffuse aurorae. In this study, we report quasi-periodic rising (3 events) and falling tone (22 events) ECH waves observed by Van Allen Probes, and evaluate their properties. These rising and falling tone ECH waves prefer to occur during quiet geomagnetic conditions over the dusk to midnight sector in relatively high-density (10–80 cm-3) regions. Their repetition periods increase with incre ...

Shen, Xiao-Chen; Li, Wen; Ma, Qianli;

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091330

ECH wave; falling tone; rising tone; Magnetosphere; plasma wave; Van Allen Probes

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Global Magnetosphere Response to Solar Wind Dynamic Pressure Pulses During Northward IMF Using the Heliophysics System Observatory

Abstract We analyzed the magnetospheric global response to dynamic pressure pulses (DPPs) using the Heliophysics System Observatory (HSO) and ground magnetometers. During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed “cavity” and reacts to solar wind DPPs more simply than during southward IMF. In this study we use solar wind data collected by ACE and WIND together with magnetic field observations of Geotail, Cluster, THEMIS, MMS, Van Allen Probes, GOES missions, and groun ...

Vidal-Luengo, S.; Moldwin, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028587

Multi-satellite; Heliophysics System Observatory; Dynamic Pressure Pulse; Heliophysics; Magnetosphere; Van Allen Probes

Observations of Particle Loss due to Injection-Associated EMIC Waves

AbstractWe report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground-based magnetometer near the spacecraft geomagnetic footprint over a more extensive tempora ...

Kim, Hyomin; Schiller, Quintin; Engebretson, Mark; Noh, Sungjun; Kuzichev, Ilya; Lanzerotti, Louis; Gerrard, Andrew; Kim, Khan-Hyuk; Lessard, Marc; Spence, Harlan; Lee, Dae-Young; Matzka, Jürgen; Fromm, Tanja;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028503

EMIC waves; ring current; Radiation belt; wave particle interaction; injection; Particle precipitation; Van Allen Probes

Observations of Particle Loss due to Injection-Associated EMIC Waves

AbstractWe report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground-based magnetometer near the spacecraft geomagnetic footprint over a more extensive tempora ...

Kim, Hyomin; Schiller, Quintin; Engebretson, Mark; Noh, Sungjun; Kuzichev, Ilya; Lanzerotti, Louis; Gerrard, Andrew; Kim, Khan-Hyuk; Lessard, Marc; Spence, Harlan; Lee, Dae-Young; Matzka, Jürgen; Fromm, Tanja;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028503

EMIC waves; ring current; Radiation belt; wave particle interaction; injection; Particle precipitation; Van Allen Probes

Observations of Particle Loss due to Injection-Associated EMIC Waves

AbstractWe report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground-based magnetometer near the spacecraft geomagnetic footprint over a more extensive tempora ...

Kim, Hyomin; Schiller, Quintin; Engebretson, Mark; Noh, Sungjun; Kuzichev, Ilya; Lanzerotti, Louis; Gerrard, Andrew; Kim, Khan-Hyuk; Lessard, Marc; Spence, Harlan; Lee, Dae-Young; Matzka, Jürgen; Fromm, Tanja;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028503

EMIC waves; ring current; Radiation belt; wave particle interaction; injection; Particle precipitation; Van Allen Probes

Observations of Particle Loss due to Injection-Associated EMIC Waves

AbstractWe report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground-based magnetometer near the spacecraft geomagnetic footprint over a more extensive tempora ...

Kim, Hyomin; Schiller, Quintin; Engebretson, Mark; Noh, Sungjun; Kuzichev, Ilya; Lanzerotti, Louis; Gerrard, Andrew; Kim, Khan-Hyuk; Lessard, Marc; Spence, Harlan; Lee, Dae-Young; Matzka, Jürgen; Fromm, Tanja;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028503

EMIC waves; ring current; Radiation belt; wave particle interaction; injection; Particle precipitation; Van Allen Probes

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions wer ...

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions wer ...

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions wer ...

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

2020

Equatorial pitch angle distributions of 1 – 50 keV electrons in Earth s inner magnetosphere: an empirical model based on the Van Allen Probes observations

Using seven years of data from the HOPE instrument on the Van Allen Probes, equatorial pitch angle distributions (PADs) of 1 – 50 keV electrons in Earth s inner magnetosphere are investigated statistically. An empirical model of electron equatorial PADs as a function of radial distance, magnetic local time, geomagnetic activity, and electron energy is constructed using the method of Legendre polynomial fitting. Model results show that most equatorial PADs of 1 – 10s of keV electrons in Earth s inner magnetosphere are pan ...

Zhao, H.; Friedel, R.; Chen, Y.; Baker, D.; Li, X.; Malaspina, D.; Larsen, B.; Skoug, R.; Funsten, H.; Reeves, G.; Boyd, A.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028322

Pitch angle distribution; energetic electrons; Earth s inner magnetosphere; Anisotropy; Chorus wave; statistical analysis; Van Allen Probes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under ...

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

Mirror instabilities in the inner magnetosphere and their potential for localized ULF wave generation

Results from the NASA Van Allen Probes mission indicate extensive observations of mirror/drift-mirror (M/D-M hereafter) unstable plasma regions in the nightside inner magnetosphere. Said plasmas lie on the threshold between the kinetic and frozen-in plasma regimes and have favorable conditions for the formation of M/D-M modes and subsequent ultra-low frequency (ULF) wave signatures in the surrounding plasma. We present the results of a climatological analysis of plasma-γ (anisotropy measure) and total plasma-β (ratio of pa ...

Cooper, M.; Gerrard, A.; Lanzerotti, L.; Soto-Chavez, A.; Kim, H.; Kuzichev, I.; Goodwin, L.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028773

Mirror mode-unstable plasma; ULF waves; magnetotail injections; inner magnetosphere; Van Allen Probes

Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models

Abstract The resonant interaction of energetic particles with plasma waves, such as chorus and plasmaspheric hiss waves, plays a direct and crucial role in the acceleration and loss of radiation belt electrons that ultimately affect the dynamics of the radiation belts. In this study, we use the comprehensive wave data measurements made by the Electric and Magnetic Field Instrument Suite and Integrated Science instruments on board the two Van Allen probes, to develop multi-parameter statistical chorus and plasmaspheric hiss w ...

Aryan, Homayon; Bortnik, Jacob; Meredith, Nigel; Horne, Richard; Sibeck, David; Balikhin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028403

chorus waves; inner magnetosphere; multi parameter wave distribution; plasmaspheric hiss waves; Van Allen Probes; wave-particle interactions

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ...

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ...

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ...

Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020060

radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes

Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic ...

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089875

Van Allen Probes

Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic ...

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089875

Van Allen Probes

Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic ...

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089875

Van Allen Probes

Precipitation Loss of Radiation Belt Electrons by Two-Band Plasmaspheric Hiss Waves

A two-band plasmaspheric hiss consisting of a low-frequency band (normal hiss with the frequency below 2 kHz) and a high-frequency band (locally generated hiss with the frequency up to 10 kHz) was observed on 6 January 2014 by the Van Allen Probes (He et al., 2019, https://doi.org/10.1029/2018GL081578). The electron scattering effect driven by this kind of two-band plasmaspheric hiss is evaluated by the quasi-linear diffusion simulation for the first time. Realistic wave characteristic parameters of the two-band plasmasp ...

He, Zhaoguo; Yan, Qi; Zhang, Xiaoping; Yu, Jiang; Ma, Yonghui; Cao, Yong; Cui, Jun;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028157

two-band hiss; radiation belt electron; loss; Van Allen Probes

A New Approach to Constructing Models of Electron Diffusion by EMIC Waves in the Radiation Belts

Electromagnetic ion cyclotron (EMIC) waves play an important role in relativistic electron losses in the radiation belts through diffusion via resonant wave-particle interactions. We present a new approach for calculating bounce and drift-averaged EMIC electron diffusion coefficients. We calculate bounce-averaged diffusion coefficients, using quasi-linear theory, for each individual Combined Release and Radiation Effects Satellite (CRRES) EMIC wave observation using fitted wave properties, the plasma density and the backgrou ...

Ross, J.; Glauert, S.; Horne, R.; Watt, C.; Meredith, N.; Woodfield, E.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088976

Radiation belts; EMIC waves; electron diffusion; Van Allen Probes

First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising to ...

Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028315

Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes

First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising to ...

Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028315

Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes

First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising to ...

Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028315

Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes

First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising to ...

Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028315

Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes

First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising to ...

Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028315

Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes



  1      2      3      4      5      6