Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 1225 entries in the Bibliography.
Showing entries from 1 through 50
2021 |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Realistic electron diffusion rates and lifetimes due to scattering by electron holes AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ... Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029380 diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes |
Realistic electron diffusion rates and lifetimes due to scattering by electron holes AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ... Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029380 diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes |
Abstract Magnetosonic (MS) waves and Electromagnetic ion cyclotron (EMIC) waves are important plasma waves in the magnetosphere. Using the Van Allen Probes observations from 2012 to 2017, we constructed the global distribution of simultaneous occurrence of MS and EMIC waves. We found a total of 214 events, and the waves distribute from the noon sector to the duskside. Furthermore, we quantitatively analyze the combined effects of both waves on protons and electrons by calculating of particle diffusion coefficients and 2-D Fo ... Published by: Geophysical Research Letters Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093885 EMIC waves; MS waves; Wave-particle interaction; diffusion coefficients; Van Allen Probes |
PreMevE Update: Forecasting Ultra-relativistic Electrons inside Earth’s Outer Radiation Belt Abstract Energetic electrons inside Earth’s Van Allen belts pose a major radiation threat to space-borne electronics that often play vital roles in modern society. Ultra-relativistic electrons with energies greater than or equal to two Megaelectron-volt (MeV) are of particular interest, and thus forecasting these ≥2 MeV electrons has significant meaning to all space sectors. Here we update the latest development of the predictive model for MeV electrons in the outer radiation belt. The new version, called PreMevE-2E, for ... Sinha, Saurabh; Chen, Yue; Lin, Youzuo; de Lima, Rafael; Published by: Space Weather Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021SW002773 Supervised Machine Learning; Van Allen electron radiation belt; Predicting ultra-relativistic electrons; Van Allen Probes |
Abstract The plasma mass loading of the terrestrial equatorial inner magnetosphere is a key determinant of the characteristics and propagation of ULF waves. Electron number density is also an important factor for other types of waves such as chorus, hiss and EMIC waves. In this paper, we use Van Allen Probe data from September 2012 to February 2019 to create average models of electron densities and average ion mass in the plasmasphere and plasmatrough, near the Earth’s magnetic equator. These models are combined to provide ... James, Matthew; Yeoman, Tim; Jones, Petra; Sandhu, Jasmine; Goldstein, Jerry; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029565 |
Abstract The plasma mass loading of the terrestrial equatorial inner magnetosphere is a key determinant of the characteristics and propagation of ULF waves. Electron number density is also an important factor for other types of waves such as chorus, hiss and EMIC waves. In this paper, we use Van Allen Probe data from September 2012 to February 2019 to create average models of electron densities and average ion mass in the plasmasphere and plasmatrough, near the Earth’s magnetic equator. These models are combined to provide ... James, Matthew; Yeoman, Tim; Jones, Petra; Sandhu, Jasmine; Goldstein, Jerry; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029565 |
Global Survey of Electron Precipitation due to Hiss Waves in the Earth s Plasmasphere and Plumes Abstract We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5-year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation at L > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause ... Ma, Q.; Li, W.; Zhang, X.-J.; Bortnik, J.; Shen, X.-C.; Connor, H.; Boyd, A.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029644 electron precipitation; hiss wave; plasmasphere; plasmaspheric plume; Precipitating Energy Flux; Van Allen Probes Survey; Van Allen Probes |
Superposed Epoch Analysis of Dispersionless Particle Injections Inside Geosynchronous Orbit AbstractDispersionless injections, involving sudden, simultaneous flux enhancements of energetic particles over some broad range of energy, are a characteristic signature of the particles that are experiencing a significant acceleration and/or rapid inward transport at the leading edge of injections. We have statistically analyzed data from Van Allen Probes (also known as RBSP ) to reveal where the proton (H+) and electron (e–) dispersionless injections occur preferentially inside geosynchronous orbit and how they develop ... Motoba, T.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A; Lanzerotti, L.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029546 Dispersionless injections; substorms; inner magnetosphere; Van Allen Probes |
Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ... Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029363 outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes |
Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ... Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029363 outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes |
Abstract Here we perform a statistical analysis of low frequency ultra-low-frequency (ULF) waves (mHz-Hz) in the Earth’s inner magnetosphere excluding electromagnetic ion cyclotron (EMIC) waves concurrently observed. We use the magnetic field data from the two Van Allen Probes during their first magnetic local time (MLT) revolution that cover the periods of coronal mass ejections. The major results of our analysis are as follows. (1) Spectra of both the transverse and compressional ULF waves are well approximated by the po ... Gamayunov, Konstantin; Engebretson, Mark; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029247 coronal mass ejection; low frequency ULF waves; Earth s inner magnetosphere; statistics of ULF waves; turbulent energy cascade; seeding of EMIC waves; Van Allen Probes |
Electromagnetic power of lightning superbolts from Earth to space Lightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both fro ... Ripoll, J.-F.; Farges, T.; Malaspina, D.; Cunningham, G.; Lay, E.; Hospodarsky, G.; Kletzing, C.; Wygant, J.; Published by: Nature Communications Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1038/s41467-021-23740-6 |
The Roles of the Magnetopause and Plasmapause in Storm-Time ULF Wave Power Enhancements Abstract Ultra Low Frequency (ULF) waves play a crucial role in transporting and coupling energy within the magnetosphere. During geomagnetic storms, dayside magnetospheric ULF wave power is highly variable with strong enhancements that are dominated by elevated solar wind driving. However, the radial distribution of ULF wave power is complex - controlled interdependently by external solar wind driving and the internal magnetospheric structuring. We conducted a statistical analysis of observed storm-time ULF wave power from ... Sandhu, J.; Rae, I.; Staples, F.; Hartley, D.; Walach, M.-T.; Elsden, T.; Murphy, K.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029337 ULF waves; Geomagnetic storms; Van Allen Probes; radial diffusion; inner magnetosphere; plasmasphere |
Abstract We present a comparison of magnetospheric plasma mass/electron density observations during an 11-day interval which includes the geomagnetic storm of 22 June 2015. For this study we used: equatorial plasma mass density derived from geomagnetic field line resonances (FLRs) detected by Van Allen Probes and at the ground-based magnetometer networks EMMA and CARISMA; in situ electron density inferred by the Neural-network-based Upper hybrid Resonance Determination algorithm applied to plasma wave Van Allen Probes measur ... Vellante, M.; Takahashi, K.; Del Corpo, A.; Zhelavskaya, I.; Goldstein, J.; Mann, I.; Pietropaolo, E.; Reda, J.; Heilig, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029292 magnetoseismology; plasmasphere; Field line resonance; ground-based magnetometers; Van Allen Probes; Swarm satellites |
The Link between Wedge-like and Nose-like Ion Spectral Structures in the Inner Magnetosphere AbstractThe wedge-like and nose-like ion spectral structures, named after their characteristic shapes in the energy-time spectrograms, appear to be distinctively different structures in the Earth s inner magnetosphere. Here we present a case study with conjugate observations from the Arase spacecraft and the twin Van Allen Probes on July 1 and 2, 2017, which displayed the characteristic signatures of the wedge-like and nose-like ion structures, respectively. When the spacecraft nearly intersected at L =2.8, the two structure ... Ren, Jie; Zhou, Xu-Zhi; Zong, Qiu-Gang; Yue, Chao; Fu, Sui-Yan; Miyoshi, Y.; Zhang, Xiao-Xin; Asamura, K.; Shinohara, I.; Published by: Geophysical Research Letters Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093930 |
The Link between Wedge-like and Nose-like Ion Spectral Structures in the Inner Magnetosphere AbstractThe wedge-like and nose-like ion spectral structures, named after their characteristic shapes in the energy-time spectrograms, appear to be distinctively different structures in the Earth s inner magnetosphere. Here we present a case study with conjugate observations from the Arase spacecraft and the twin Van Allen Probes on July 1 and 2, 2017, which displayed the characteristic signatures of the wedge-like and nose-like ion structures, respectively. When the spacecraft nearly intersected at L =2.8, the two structure ... Ren, Jie; Zhou, Xu-Zhi; Zong, Qiu-Gang; Yue, Chao; Fu, Sui-Yan; Miyoshi, Y.; Zhang, Xiao-Xin; Asamura, K.; Shinohara, I.; Published by: Geophysical Research Letters Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093930 |
Evening side EMIC waves and related proton precipitation induced by a substorm Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The ... Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029091 |
Evening side EMIC waves and related proton precipitation induced by a substorm Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The ... Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029091 |
Evening side EMIC waves and related proton precipitation induced by a substorm Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The ... Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029091 |
Evening side EMIC waves and related proton precipitation induced by a substorm Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The ... Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029091 |
Evening side EMIC waves and related proton precipitation induced by a substorm Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The ... Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029091 |
Evening side EMIC waves and related proton precipitation induced by a substorm Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The ... Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029091 |
AbstractThe spatial scales of whistler-mode waves, determined by their generation process, propagation, and damping, are important for assessing the scaling and efficiency of wave-particle interactions affecting the dynamics of the radiation belts. We use multi-point wave measurements in 2013-2019 by two identically equipped Van Allen Probes spacecraft covering all MLTs at L=2-6 near the geomagnetic equator to investigate the spatial extent of active regions of chorus and hiss waves, their wave amplitude distribution in the ... Agapitov, O.; Mourenas, D.; Artemyev, A.; Breneman, A.; Bonnell, J.W.; Hospodarsky, G.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028998 chorus waves; chorus genration; Radiation belts; Van Allen Probes |
AbstractThe spatial scales of whistler-mode waves, determined by their generation process, propagation, and damping, are important for assessing the scaling and efficiency of wave-particle interactions affecting the dynamics of the radiation belts. We use multi-point wave measurements in 2013-2019 by two identically equipped Van Allen Probes spacecraft covering all MLTs at L=2-6 near the geomagnetic equator to investigate the spatial extent of active regions of chorus and hiss waves, their wave amplitude distribution in the ... Agapitov, O.; Mourenas, D.; Artemyev, A.; Breneman, A.; Bonnell, J.W.; Hospodarsky, G.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028998 chorus waves; chorus genration; Radiation belts; Van Allen Probes |
AbstractThe spatial scales of whistler-mode waves, determined by their generation process, propagation, and damping, are important for assessing the scaling and efficiency of wave-particle interactions affecting the dynamics of the radiation belts. We use multi-point wave measurements in 2013-2019 by two identically equipped Van Allen Probes spacecraft covering all MLTs at L=2-6 near the geomagnetic equator to investigate the spatial extent of active regions of chorus and hiss waves, their wave amplitude distribution in the ... Agapitov, O.; Mourenas, D.; Artemyev, A.; Breneman, A.; Bonnell, J.W.; Hospodarsky, G.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028998 chorus waves; chorus genration; Radiation belts; Van Allen Probes |
Abstract Following the end of the Van Allen Probes mission, the Arase satellite offers a unique opportunity to continue in-situ radiation belt and ring current particle measurements into the next solar cycle. In this study we compare spin-averaged flux measurements from the MEPe, HEP-L, HEP-H, and XEP-SSD instruments on Arase with those from the MagEIS and REPT instruments on the Van Allen Probes, calculating Pearson correlation coefficient and the mean ratio of fluxes at L* conjunctions between the spacecraft. Arase and Van ... Szabó-Roberts, Mátyás; Shprits, Yuri; Allison, Hayley; Vasile, Ruggero; Smirnov, Artem; Aseev, Nikita; Drozdov, Alexander; Miyoshi, Yoshizumi; Claudepierre, Seth; Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Takashima, Takeshi; Higashio, Nana; Hori, Tomo; Keika, Kunihiro; Imajo, Shun; Shinohara, Iku; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028929 |
Abstract Following the end of the Van Allen Probes mission, the Arase satellite offers a unique opportunity to continue in-situ radiation belt and ring current particle measurements into the next solar cycle. In this study we compare spin-averaged flux measurements from the MEPe, HEP-L, HEP-H, and XEP-SSD instruments on Arase with those from the MagEIS and REPT instruments on the Van Allen Probes, calculating Pearson correlation coefficient and the mean ratio of fluxes at L* conjunctions between the spacecraft. Arase and Van ... Szabó-Roberts, Mátyás; Shprits, Yuri; Allison, Hayley; Vasile, Ruggero; Smirnov, Artem; Aseev, Nikita; Drozdov, Alexander; Miyoshi, Yoshizumi; Claudepierre, Seth; Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Takashima, Takeshi; Higashio, Nana; Hori, Tomo; Keika, Kunihiro; Imajo, Shun; Shinohara, Iku; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028929 |
Abstract Following the end of the Van Allen Probes mission, the Arase satellite offers a unique opportunity to continue in-situ radiation belt and ring current particle measurements into the next solar cycle. In this study we compare spin-averaged flux measurements from the MEPe, HEP-L, HEP-H, and XEP-SSD instruments on Arase with those from the MagEIS and REPT instruments on the Van Allen Probes, calculating Pearson correlation coefficient and the mean ratio of fluxes at L* conjunctions between the spacecraft. Arase and Van ... Szabó-Roberts, Mátyás; Shprits, Yuri; Allison, Hayley; Vasile, Ruggero; Smirnov, Artem; Aseev, Nikita; Drozdov, Alexander; Miyoshi, Yoshizumi; Claudepierre, Seth; Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Takashima, Takeshi; Higashio, Nana; Hori, Tomo; Keika, Kunihiro; Imajo, Shun; Shinohara, Iku; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028929 |
Abstract Following the end of the Van Allen Probes mission, the Arase satellite offers a unique opportunity to continue in-situ radiation belt and ring current particle measurements into the next solar cycle. In this study we compare spin-averaged flux measurements from the MEPe, HEP-L, HEP-H, and XEP-SSD instruments on Arase with those from the MagEIS and REPT instruments on the Van Allen Probes, calculating Pearson correlation coefficient and the mean ratio of fluxes at L* conjunctions between the spacecraft. Arase and Van ... Szabó-Roberts, Mátyás; Shprits, Yuri; Allison, Hayley; Vasile, Ruggero; Smirnov, Artem; Aseev, Nikita; Drozdov, Alexander; Miyoshi, Yoshizumi; Claudepierre, Seth; Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Takashima, Takeshi; Higashio, Nana; Hori, Tomo; Keika, Kunihiro; Imajo, Shun; Shinohara, Iku; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028929 |