Found 21 entries in the Bibliography.

Showing entries from 1 through 21


Space Weather Operation at KASI with Van Allen Probes Beacon Signals

The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth\textquoterights radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space we ...

Lee, Jongkil; Kim, Kyung-Chan; Romeo, Giuseppe; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin;

YEAR: 2018     DOI: 10.1002/2017SW001726

Electron acceleration; Radiation belt; Relativistic electron; Space weather; Van Allen Probes


Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wa ...

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The s ...

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; . Y. Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Multipoint observations of energetic particle injections and substorm activity during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes

This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex serie ...

Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; . Y. Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.;

YEAR: 2017     DOI: 10.1002/2017JA024554

energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions

Storm time empirical model of O + and O 6+ distributions in the magnetosphere

Recent studies have utilized different charge states of oxygen ions as a tracer for the origins of plasma populations in the magnetosphere of Earth, using O+ as an indicator of ionospheric-originating plasma and O6+ as an indicator of solar wind-originating plasma. These studies have correlated enhancements in O6+ to various solar wind and geomagnetic conditions to characterize the dominant solar wind injection mechanisms into the magnetosphere but did not include analysis of the temporal evolution of these ions. A sixth-ord ...

Allen, R.; Livi, S.; Vines, S.; Goldstein, J.; Cohen, I.; Fuselier, S.; Mauk, B.; Spence, H.;

YEAR: 2017     DOI: 10.1002/2017JA024245

MMS mission; Polar mission; solar wind injection; storm time dynamics; Van Allen Probes; Van Allen Probes mission

Dominance of high energy (>150 keV) heavy ion intensities in Earth\textquoterights middle to outer magnetosphere

Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale (MMS) mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically ...

Cohen, Ian; Mitchell, Donald; Kistler, Lynn; Mauk, Barry; Anderson, Brian; Westlake, Joseph; Ohtani, Shinichi; Hamilton, Douglas; Turner, Drew; Blake, Bern; Fennell, Joseph; Jaynes, Allison; Leonard, Trevor; Gerrard, Andrew; Lanzerotti, Louis; Allen, Robert; Burch, James;

YEAR: 2017     DOI: 10.1002/2017JA024351

energetic ion composition; magnetospheric ion composition; Magnetospheric Multiscale (MMS); outer magnetosphere; ring current composition; suprathermal ions; Van Allen Probes


The permeability of the magnetopause to a multispecies substorm injection of energetic particles

Leakage of ions from the magnetosphere into the magnetosheath remains an important topic in understanding the plasma physics of Earth\textquoterights magnetopause and the interaction of the solar wind with the magnetosphere. Here using sophisticated instrumentation from two spacecraft (Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes and Energetic Ion Spectrometer on the Magnetospheric Multiscale) spaced uniquely near and outside the dayside magnetopause, we are able to determine the escape mech ...

Westlake, J.; Cohen, I.; Mauk, B.; Anderson, B.; Mitchell, D.; Gkioulidou, M.; Walsh, B.; Lanzerotti, L.; Strangeway, R.; Russell, C.;

YEAR: 2016     DOI: 10.1002/2016GL070189

energetic particles; magnetopause; magnetosheath; MMSEPD; Van Allen Probes

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially ...

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnet ...

Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.;

YEAR: 2016     DOI: 10.1002/grl.v43.1210.1002/2016GL069643

Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes


Comparative Investigation of the Energetic Ion Spectra Comprising the Magnetospheric Ring Currents of the Solar System

Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) wav ...

Mauk, B.;

YEAR: 2014     DOI: 10.1002/2014JA020392

Ion Spectra; Magnetic Storms; Planetary magnetospheres; ring current; Van Allen Probes

The Evolving Space Weather System - Van Allen Probes Contribution

The overarching goal and purpose of the study of space weather is clear - to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800\textquoterights to modern day disturbances of the electric power grid, communications a ...

Zanetti, L.; Mauk, B.; Fox, N.J.; Barnes, R.J.; Weiss, M.; Sotirelis, T.S.; Raouafi, N.-E.; Kessel, R.; Becker, H.;

YEAR: 2014     DOI: 10.1002/2014SW001108

Radiation belts; Van Allen Probes

The role of small-scale ion injections in the buildup of Earth\textquoterights ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm

Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. Durin ...

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Sotirelis, T.; Mauk, B.; Lanzerotti, L.;

YEAR: 2014     DOI: 10.1002/2014JA020096

Geomagnetic storms; Ion injections; ring current; Van Allen Probes

The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth\textquoterights magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each o ...

Mauk, B.; Blake, J.; Baker, D.; Clemmons, J.; Reeves, G.; Spence, H.; Jaskulek, S.; Schlemm, C.; Brown, L.; Cooper, S.; Craft, J.; Fennell, J.; Gurnee, R.; Hammock, C.; Hayes, J.; Hill, P.; Ho, G.; Hutcheson, J.; Jacques, A.; Kerem, S.; Mitchell, D.; Nelson, K.; Paschalidis, N.; Rossano, E.; Stokes, M.; Westlake, J.;

YEAR: 2014     DOI: 10.1007/s11214-014-0055-5

Magnetic reconnection; Magnetosphere; Magnetospheric multiscale; NASA mission; Particle acceleration; Space plasma

Journal Special Collection Explores Early Results From the Van Allen Probes Mission

The processes governing the charged particle populations in the radiation belts encircling Earth have been the subject of intense interest and increasing concern since their discovery by James Van Allen and his team more than 50 years ago [Baker et al., 2013]. Intense interest continues because we still do not know how the various processes work in concert to enhance, remove, and transport particle radiation. Concern is ongoing because the Van Allen radiation belts pose hazards to astronauts and our ever-growing fleet of spa ...

Mauk, Barry; Sibeck, David; Kessel, Ramona;

YEAR: 2014     DOI: 10.1002/eost.v95.1310.1002/2014EO130007

Van Allen Probes

Rotationally driven 'zebra stripes' in Earth's inner radiation belt

Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth\textquoterights rotation can change the velocity of trapped particles by only about 1\textendash2 kil ...

. Y. Ukhorskiy, A; Sitnov, M.; Mitchell, D.; Takahashi, K; Lanzerotti, L.; Mauk, B.;

YEAR: 2014     DOI: 10.1038/nature13046

Magnetospheric physics; Van Allen Probes


Early Results From the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission

The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth\textquoterights Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array outp ...

Maurer, Richard; Goldsten, John; Peplowski, Patrick; Holmes-Siedle, Andrew; Butler, Michael; Herrmann, Carl; Mauk, Barry;

YEAR: 2013     DOI: 10.1109/TNS.2013.2281937

Early Results from the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission

The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth\textquoterights Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array outp ...

Maurer, Richard; Goldsten, J.; Peplowski, P.; Holmes-Siedle, A.; Butler, Michael; Herrmann, C.; Mauk, B.;

YEAR: 2013     DOI: 10.1109/TNS.2013.2281937

RBSP; Van Allen Probes

The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA\textquoterights Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electr ...

Goldsten, J.; Maurer, R.; Peplowski, P.; Holmes-Siedle, A.; Herrmann, C.; Mauk, B.;

YEAR: 2013     DOI: 10.1007/s11214-012-9917-x

RBSP; Van Allen Probes

Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth\textquoterights magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1\texttimes5.8 RE, 10o). The orbits are slightly different so that 1 spacecraft laps the other ...

Mauk, B.; Fox, N.; Kanekal, S.; Kessel, R.; Sibeck, D.; UKHORSKIY, A;

YEAR: 2013     DOI: 10.1007/s11214-012-9908-y

RBSP; Van Allen Probes

Analysis of EMIC-wave-moderated flux limitation of measured energetic ion spectra in multispecies magnetospheric plasmas

A differential Kennel-Petschek (KP) flux limit for magnetospheric energetic ions is devised taking into account multiple ion species effects on electromagnetic ion cyclotron (EMIC) waves that scatter the ions. The idea is that EMIC waves may limit the highest ion intensities during acceleration phases of storms and substorms (~ hour) while other mechanisms (e.g., charge exchange) may account for losses below those limits and over longer periods of time. This approach is applied to published Earth magnetosphere energetic ion ...

Mauk, B.;

YEAR: 2013     DOI: 10.1002/grl.50789

energetic ions; Radiation belts; ring current; Van Allen Probes


Radiation belt storm probes: Resolving fundamental physics with practical consequences

The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth\textquoterights radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radi ...

Ukhorskiy, Aleksandr; Mauk, Barry; Fox, Nicola; Sibeck, David; Grebowsky, Joseph;

YEAR: 2011     DOI: 10.1016/j.jastp.2010.12.005

Radiation belts; Space weather; Van Allen Probes