Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 6 entries in the Bibliography.
Showing entries from 1 through 6
2015 |
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 \texttimes 10-6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59\textdegree), where the scattered wavelength reaches the limits of the plasma column. The scatt ... Tejero, E.; Crabtree, C.; Blackwell, D.; Amatucci, W.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.; Published by: Scientific Reports Published on: 12/2015 YEAR: 2015   DOI: 10.1038/srep17852 |
Evolution of lower hybrid turbulence in the ionosphere Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An im ... Ganguli, G.; Crabtree, C.; Mithaiwala, M.; Rudakov, L.; Scales, W.; Published by: Physics of Plasmas Published on: 11/2015 YEAR: 2015   DOI: 10.1063/1.4936281 |
Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts Important nonlinear wave-wave and wave-particle interactions that occur in the Earth\textquoterights Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85\textdegree . When the pump amplitude exceeds a threshold \~5\texttimes10-6 times the background magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (\~5 ... Tejero, E.; Crabtree, C.; Blackwell, D.; Amatucci, W.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.; Published by: Physics of Plasmas Published on: 09/2015 YEAR: 2015   DOI: 10.1063/1.4928944 |
Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts Important nonlinear wave-wave and wave-particle interactions that occur in the Earth\textquoterights Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85\textordmasculine. When the pump amplitude exceeds a threshold ~5 x10^6 times the back- ground magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (~55\t ... Tejero, E.; Crabtree, C.; Blackwell, D.; Amatucci, W.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.; Published by: Physics of Plasmas Published on: 08/2015 YEAR: 2015   DOI: 10.1063/1.4928944 Electrostatic Waves; magnetic fields; Nonlinear scattering; Plasma electromagnetic waves; Whistler waves |
2012 |
Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a ... Crabtree, C.; Rudakov, L.; Ganguli, G.; Mithaiwala, M.; Galinsky, V.; Shevchenko, V.; Published by: Physics of Plasmas Published on: 01/2012 YEAR: 2012   DOI: 10.1063/1.3692092 |
2005 |
One of the main questions concerning radiation belt research is the origin of very high energy (>1 MeV) electrons following many space storms. Under the hypothesis that the plasma sheet electron population is the source of these electrons, which are convected to the outer radiation belt region during substorms, we estimate the flux of particles generated at geosynchronous orbit. We use the test particle method of following guiding center electrons as they drift in the electromagnetic fields during substorm dipolarization. Th ... Published by: Journal of Geophysical Research Published on: 07/2005 YEAR: 2005   DOI: 10.1029/2004JA010511 |
1