Bibliography



Found 39 entries in the Bibliography.


Showing entries from 1 through 39


2019

Shorting Factor In-Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth\textquoterights Plasmasphere

Satellite-based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In-flight calibration of double-probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a paramet ...

Lejosne, Solène; Mozer, F.;

YEAR: 2019     DOI: 10.1029/2018EA000550

DC electric field; double probe instrument; electric drift; plasmasphere; shorting factor; Van Allen Probes

2018

Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop

It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large-scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F-18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potenti ...

Lejosne, ène; Kunduri, B.; Mozer, F.; Turner, D.;

YEAR: 2018     DOI: 10.1029/2018GL077969

adiabatic invariants; drift paths; electric fields; injections; SAPS; Van Allen Probes

Magnetic activity dependence of the electric drift below L=3

More than two years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L=3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the night-side. The amplitude of the slowdown is a function of L, local time MLT, and Kp, in a pattern consistent with the storm-time dynamics of the ionosphe ...

Lejosne, ène; Mozer, F.;

YEAR: 2018     DOI: 10.1029/2018GL077873

electric drift; electric field; Inner radiation belt; ionospheric disturbance dynamo; plasmasphere; subcorotation; Van Allen Probes

Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear w ...

Agapitov, O.; Drake, J.; Vasko, I.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G.;

YEAR: 2018     DOI: 10.1002/2017GL076957

Electron acceleration; electron acoustic waves; induced scattering; nonlinear wave-particle interactions; Van Allen Probes; wave steepening; Whistler waves

Reply to Comment by Nishimura Et Al.

Nishimura et al. (2010, https://doi.org/10.1126/science.1193186, 2011, https://doi.org/10.1029/2011JA016876, 2013, https://doi.org/10.1029/2012JA018242, and in their comment, hereafter called N18) have suggested that chorus waves interact with equatorial electrons to produce pulsating auroras. We agree that chorus can scatter electrons >10 keV, as do Time Domain Structures (TDSs). Lower-energy electrons occurring in pulsating auroras cannot be produced by chorus, but such electrons are scattered and accelerated by TDS. TDSs ...

Mozer, F.; Hull, A.; Lejosne, S.; . Y. Vasko, I;

YEAR: 2018     DOI: 10.1002/2018JA025218

chorus cannot precipitate electrons observed in pulsating auroras; time domain structures cause electron precipitation in pulsating auroras; Van Allen Probes

2017

SIMULTANEOUS OBSERVATIONS OF LOWER BAND CHORUS EMISSIONS AT THE EQUATOR AND MICROBURST PRECIPITATING ELECTRONS IN THE IONOSPHERE

On December 11, 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 second burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One-second averaged variations of the chorus intensity and the microburst electron flux were well-correlated. The low altitude electr ...

Mozer, F.; Agapitov, O.; Blake, J.; . Y. Vasko, I;

YEAR: 2017     DOI: 10.1002/2017GL076120

chorus makes microbursts; Van Allen Probes

Synthetic empirical chorus wave model from combined Van Allen Probes and Cluster statistics

Chorus waves are among the most important natural electromagnetic emissions in the magnetosphere as regards their potential effects on electron dynamics. They can efficiently accelerate or precipitate electrons trapped in the outer radiation belt, producing either fast increases of relativistic particle fluxes, or auroras at high latitudes. Accurately modeling their effects, however, requires detailed models of their wave power and obliquity distribution as a function of geomagnetic activity in a particularly wide spatial do ...

Agapitov, O.; Mourenas, D.; Artemyev, A.; Mozer, F.; Hospodarsky, G.; Bonnell, J.; Krasnoselskikh, V.;

YEAR: 2017     DOI: 10.1002/2017JA024843

chorus waves model; Van Allen Probes

Pulsating auroras produced by interactions of electrons and time domain structures

Previous evidence has suggested that either lower band chorus waves or kinetic Alfven waves scatter equatorial kilovolt electrons that propagate to lower altitudes where they precipitate or undergo further low-altitude scattering to make pulsating auroras. Recently, time domain structures (TDSs) were shown, both theoretically and experimentally, to efficiently scatter equatorial electrons. To assess the relative importance of these three mechanisms for production of pulsating auroras, 11 intervals of equatorial THEMIS data a ...

Mozer, F.; Agapitov, O.; Hull, A.; Lejosne, S.; . Y. Vasko, I;

YEAR: 2017     DOI: 10.1002/2017JA024223

pulsating auroras; Van Allen Probes; wave scattering

Sub-Auroral Polarization Stream (SAPS) duration as determined from Van Allen Probe successive electric drift measurements

We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the Sub-Auroral Polarization Streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here, we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than two years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial loca ...

Lejosne, ène; Mozer, F.;

YEAR: 2017     DOI: 10.1002/2017GL074985

duration; electric drift measurements; magnetosphere-ionosphere coupling; SAPS; Van Allen Probes

Model-observation comparison for the geographic variability of the plasma electric drift in the Earth\textquoterights innermost magnetosphere

Plasmaspheric rotation is known to lag behind Earth rotation. The causes for this corotation lag are not yet fully understood. We have used more than two years of Van Allen Probe observations to compare the electric drift measured below L~2 with the predictions of a general model. In the first step, a rigid corotation of the ionosphere with the solid Earth was assumed in the model. The results of the model-observation comparison are twofold: (1) radially, the model explains the average observed geographic variability of the ...

Lejosne, ène; Maus, Stefan; Mozer, F.;

YEAR: 2017     DOI: 10.1002/2017GL074862

corotation; electric field; Ionosphere; plasmasphere; thermosphere; Van Allen Probes; wind

Electron-acoustic solitons and double layers in the inner magnetosphere

The Van Allen Probes observe generally two types of electrostatic solitary waves (ESW) contributing to the broadband electrostatic wave activity in the nightside inner magnetosphere. ESW with symmetric bipolar parallel electric field are electron phase space holes. The nature of ESW with asymmetric bipolar (and almost unipolar) parallel electric field has remained puzzling. To address their nature, we consider a particular event observed by Van Allen Probes to argue that during the broadband wave activity electrons with ener ...

. Y. Vasko, I; Agapitov, O.; Mozer, F.; Bonnell, J.; Artemyev, A.; Krasnoselskikh, V.; Reeves, G.; Hospodarsky, G.;

YEAR: 2017     DOI: 10.1002/2017GL074026

double layers; electron-acoustic waves; inner magnetosphere; solitons; Van Allen Probes

Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VL ...

Agapitov, O.; Blum, L.; Mozer, F.; Bonnell, J.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2017GL072701

chorus spatial scales; Van Allen Probes; VLF waves

Diffusive scattering of electrons by electron holes around injection fronts

Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify th ...

. Y. Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Bonnell, J.;

YEAR: 2017     DOI: 10.1002/2016JA023337

electron holes; electron losses; injection; Radiation belt; solitary waves; Van Allen Probes

2016

Electron holes in the outer radiation belt: Characteristics and their role in electron energization

Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energ ...

. Y. Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Drake, J.; Kuzichev, I.;

YEAR: 2016     DOI: 10.1002/2016JA023083

Electron acceleration; electron holes; injection; Radiation belt; solitary waves; Van Allen Probes

Typical values of the electric drift E \texttimes B / B 2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements

The electric drift E \texttimes B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L ~ 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependenc ...

Lejosne, ène; Mozer, F.;

YEAR: 2016     DOI: 10.1002/2016JA023613

electric drift; electric field; Inner radiation belt; plasmasphere; subcorotation; Van Allen Probes

Van Allen Probe measurements of the electric drift E \texttimes B/B2 at Arecibo\textquoterights L = 1.4 field line coordinate

We have used electric and magnetic measurements by Van Allen Probe B from 2013 to 2014 to examine the equatorial electric drift E \texttimes B/B2 at one field line coordinate set to Arecibo\textquoterights incoherent scatter radar location (L = 1.43). We report on departures from the traditional picture of corotational motion with the Earth in two ways: (1) the rotational angular speed is found to be 10\% smaller than the rotational angular speed of the Earth, in agreement with previous works on plasmaspheric notches, and (2 ...

Lejosne, Solène; Mozer, F.;

YEAR: 2016     DOI: 10.1002/2016GL069875

corotation; electric field; Inner radiation belt; Ionosphere; plasmasphere; Van Allen Probes

Oblique Whistler-Mode Waves in the Earth\textquoterights Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics

In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth\textquoterights inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and no ...

Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier; Krasnoselskikh, Vladimir; Shastun, Vitalii; Mozer, Forrest;

YEAR: 2016     DOI: 10.1007/s11214-016-0252-5

Earth radiation belts; Van Allen Probes; Wave-particle interaction; Whistler waves

A Statistical Study of Whistler Waves Observed by Van Allen Probes (RBSP) and Lightning Detected by WWLLN

Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the mos ...

Zheng, Hao; Holzworth, Robert; Brundell, James; Jacobson, Abram; Wygant, John; Hospodarsky, George; Mozer, Forrest; Bonnell, John;

YEAR: 2016     DOI: 10.1002/2015JA022010

lightnting; RBSP; Van Allen Probes; VLF; whistler wave

Near-Relativistic Electron Acceleration by Landau Trapping in Time Domain Structures

Data from the Van Allen Probes have provided the first extensive evidence of nonlinear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (less than a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric field of time domain structures (TDSs) traveling at high speeds (~20,000 km/s). This observational evidence is supported by simulations and discussion of the source and spatial extent of the fast TDS. This result indicates the possibility ...

Mozer, F.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Vasko, I.;

YEAR: 2016     DOI: 10.1002/2015GL067316

Acceleration; Van Allen Probes

2015

Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of \~1\textendash10 keV electrons and their acceleration up to 100\textendash300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along ...

Agapitov, O.; Artemyev, A.; Mourenas, D.; Mozer, F.; Krasnoselskikh, V.;

YEAR: 2015     DOI: 10.1002/2015GL066887

Landau resonance; nonlinear acceleration of electrons; oblique whistlers; Radiation belts; seed population; Van Allen Probes

Wave-particle interactions in the outer radiation belts

Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space, with the associated rapid (fraction of a bounce period) electron acceleration, to hundreds of keV by Landau resonance, in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed.

Agapitov, O.~V.; Mozer, F.~S.; Artemyev, A.~V.; Mourenas, D.; Krasnoselskikh, V.~V.;

YEAR: 2015     DOI:

plasma waves and instabilities; Radiation belts; Van Allen Probes; Wave-particle interaction

Empirical model of lower band chorus wave distribution in the outer radiation belt

Accurate modeling of wave-particle interactions in the radiation belts requires detailed information on wave amplitudes and wave-normal angular distributions over L shells, magnetic latitudes, magnetic local times, and for various geomagnetic activity conditions. In this work, we develop a new and comprehensive parametric model of VLF chorus waves amplitudes and obliqueness in the outer radiation belt using statistics of VLF measurements performed in the chorus frequency range during 10 years (2001\textendash2010) aboard the ...

Agapitov, O.; Artemyev, A.; Mourenas, D.; Mozer, F.; Krasnoselskikh, V.;

YEAR: 2015     DOI: 10.1002/2015JA021829

model for chorus wave

Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal ...

. Y. Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.;

YEAR: 2015     DOI: 10.1002/2015JA021644

double layers; Fermi mechanism; field-aligned pitch angle distributions; outer radiation belt; thermal electron acceleration; Van Allen Probes

Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves

In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth\textquoterights radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffu ...

Artemyev, A.; Mourenas, D.; Agapitov, O.; Vainchtein, D.; Mozer, F.; Krasnoselskikh, V.;

YEAR: 2015     DOI: 10.1063/1.4927774

Cyclotron resonances; magnetic fields; Particle fluctuations; Plasma electromagnetic waves; Whistler waves

Generation of nonlinear Electric Field Bursts in the outer radiation belt through the parametric decay of whistler waves

Huge numbers of different non-linear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on the Van Allen Probes. Some of them are associated with whistler waves. Such TDS often emerge on the forward edges of the whistler wave packets and form chains. The parametric decay of a whistler wave into a whistler wave propagating in the opposite direction and an electron acoustic wave is studied experimentally as well ...

Agapitov, O.; Krasnoselskikh, V.; Mozer, F.; Artemyev, A.; Volokitin, A.;

YEAR: 2015     DOI: 10.1002/2015GL064145

electron acoustic waves; nonlinear structure formation; parametric decay of whistlers; Van Allen Probes

Wave energy budget analysis in the Earth\textquoterights radiation belts uncovers a missing energy

Whistler-mode emissions are important electromagnetic waves pervasive in the Earth\textquoterights magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth\textquoterights magnetosphere, revealing that a significant fraction of the energy corresp ...

Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.;

YEAR: 2015     DOI: 10.1038/ncomms8143

Astronomy; Fluids and plasma physics; Physical sciences; Planetary sciences

Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering

In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributi ...

Artemyev, A.; Agapitov, O.; Mozer, F.; Spence, H.;

YEAR: 2015     DOI: 10.1002/2014JA020865

butterfly distribution; Electron scattering; nonadiabatic dynamics; Radiation belts; Van Allen Probes

Magnetic field depression within electron holes

We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons tr ...

. Y. Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Jovanovic, D.;

YEAR: 2015     DOI: 10.1002/2015GL063370

diamagnetic effect; electron hole; outer radiation belt; Van Allen Probes

Time Domain Structures: what and where they are, what they do, and how they are made

Time Domain Structures (TDS) (electrostatic or electromagnetic electron holes, solitary waves, double layers, etc.) are >=1 msec pulses having significant parallel (to the background magnetic field) electric fields. They are abundant through space and occur in packets of hundreds in the outer Van Allen radiation belts where they produce magnetic-field-aligned electron pitch angle distributions at energies up to a hundred keV. TDS can provide the seed electrons that are later accelerated to relativistic energies by whistlers ...

Mozer, F.S.; Agapitov, O.V.; Artemyev, A.; Drake, J.F.; Krasnoselskikh, V.; Lejosne, S.; Vasko, I.;

YEAR: 2015     DOI: 10.1002/2015GL063946

Time Domain Structures; TDS

Very Oblique Whistler Generation By Low Energy Electron Streams

Whistler-mode chorus waves are present throughout the Earth\textquoterights outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such ...

Mourenas, D.; Artemyev, A.; Agapitov, O.; Krasnoselskikh, V.; Mozer, F.S.;

YEAR: 2015     DOI: 10.1002/2015JA021135

Chorus wave; Cyclotron resonance; Landau resonance; oblique whistler; wave generation

The development of a bursty precipitation front with intense localized parallel electric fields driven by whistler waves

The dynamics and structure of whistler turbulence relevant to electron acceleration in the Earth\textquoterights outer radiation belt is explored with simulations and comparisons with observations. An initial state with an electron temperature anisotropy in a spatially localized domain drives whistlers which scatter electrons. An outward propagating front of whistlers and hot electrons nonlinearly evolves to form regions of intense parallel electric field with structure similar to observations. The precipitating hot electron ...

Drake, J.; Agapitov, O.; Mozer, F.;

YEAR: 2015     DOI: 10.1002/2015GL063528

Earth\textquoterights Outer Radiation Belts; Parallel electric fields; Particle acceleration; Precipitating electrons

2014

Thermal electron acceleration by localized bursts of electric field in the radiation belts

In this paper we investigate the resonant interaction of thermal ~10-100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth\textquoterights outer radiation belts. These structures propagate mostly away from thegeomagnetic equator a ...

Artemyev, A.; Agapitov, O.; Mozer, F.; Krasnoselskikh, V.;

YEAR: 2014     DOI: 10.1002/2014GL061248

Radiation belts; thermal electrons; Van Allen Probes; Wave-particle interaction

Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers

The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth\textquoterights outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becom ...

Mozer, S.; Agapitov, O.; Krasnoselskikh, V.; Lejosne, S.; Reeves, D.; Roth, I.;

YEAR: 2014     DOI: 10.1103/PhysRevLett.113.035001

Van Allen Probes

Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers

The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth\textquoterights outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becom ...

Mozer, F.; Agapitov, O.; Krasnoselskikh, V.; Lejosne, S.; Reeves, G.; Roth, I.;

YEAR: 2014     DOI: 10.1103/PhysRevLett.113.035001

Observations of kinetic scale field line resonances

We identify electromagnetic field variations from the Van Allen Probes which have the properties of Doppler shifted kinetic scale Alfv\ enic field line resonances. These variations are observed during injections of energetic plasmas into the inner magnetosphere. These waves have scale sizes perpendicular to the magnetic field which are determined to be of the order of an ion gyro-radius (ρi) and less. Cross-spectral analysis of the electric and magnetic fields reveals phase transitions at frequencies correlated with enhance ...

Chaston, Christopher; Bonnell, J; Wygant, John; Mozer, Forrest; Bale, Stuart; Kersten, Kris; Breneman, Aaron; Kletzing, Craig; Kurth, William; Hospodarsky, George; Smith, Charles; MacDonald, Elizabeth;

YEAR: 2014     DOI: 10.1002/2013GL058507

Van Allen Probes

2013

Megavolt Parallel Potentials Arising from Double-Layer Streams in the Earth\textquoterights Outer Radiation Belt

Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth\textquoterights outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230 000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1 000 000 v ...

Mozer, F.; Bale, S.; Bonnell, J; Chaston, C.; Roth, I.; Wygant, J.;

YEAR: 2013     DOI: 10.1103/PhysRevLett.111.235002

Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in t ...

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

1994

Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes

Electric and magnetic fields were measured by the CRRES spacecraft at an L-value of 2.2 to 2.6 near 0300 magnetic local time during a strong storm sudden commencement (SSC) on March 24, 1991. The electric field signature at the spacecraft at the time of the SSC was characterized by a large amplitude oscillation (80 mV/m peak to peak) with a period corresponding to the 150 second drift echo period of the simultaneously observed 15 MeV electrons. Considerations of previous statistical studies of the magnitude of SSC electric a ...

Wygant, J.; Mozer, F.; Temerin, M.; Blake, J.; Maynard, N.; Singer, H.; Smiddy, M.;

YEAR: 1994     DOI: 10.1029/94GL00375

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

1979

Direct Evaluation of the Radial Diffusion Coefficient near L = 6 Due to Electric Field Fluctuations

The radial diffusion coefficient for radiation belt particles near L=6 has been calculated from the measured electric field fluctuations. Simultaneous balloon flights in August 1974 from six auroral zone sites ranging 180\textdegree in magnetic longitude produced the electric field data. The large scale slowly varying ionospheric electric fields from these flights have been mapped to the equator during the quiet magnetic conditions of this campaign. These mapped equatorial electric fields were then Fourier transformed in spa ...

Holzworth, R.; Mozer, F.;

YEAR: 1979     DOI: 10.1029/JA084iA06p02559

Radial Transport



  1