Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2021 |
Abstract This paper examines the rapid losses and acceleration of trapped relativistic and ultrarelativistic electron populations in the Van Allen radiation belt during the September 7-9, 2017, geomagnetic storm. By analyzing the dynamics of the last closed drift shell (LCDS) and the electron flux and phase space density (PSD), we show that the electron dropouts are consistent with magnetopause shadowing and outward radial diffusion to the compressed LCDS. During the recovery phase an in-bound pass of Van Allen Probe A shows ... Olifer, L.; Mann, I.; Ozeke, L.; Morley, S.; Louis, H.; Published by: Geophysical Research Letters Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL092351 Van Allen Probes; magnetopause shadowing; ULF wave radial diffusion; electron phase space density |
2019 |
We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. Fo ... Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026326 Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes |
2018 |
We present observations of very fast radiation belt loss as resolved using high-time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The timescale of these losses is revealed to be as short as \~0.5 - 2 hours during intense magnetic storms, with some storms demonstrating almost total loss on these timescales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the Se ... Olifer, L.; Mann, I.; Morley, S.; Ozeke, L.; Choi, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2018 YEAR: 2018   DOI: 10.1029/2018JA025190 inner magnetosphere; magnetopause shadowing; Radiation belts; Van Allen Probes |
1