Bibliography



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2020

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in t ...

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

2016

Conjugate observations of quasiperiodic emissions by the Cluster, Van Allen Probes, and THEMIS spacecraft

We present results of a detailed analysis of two electromagnetic wave events observed in the inner magnetosphere at frequencies of a few kilohertz, which exhibit a quasiperiodic (QP) time modulation of the wave intensity. The events were observed by the Cluster and Van Allen Probes spacecraft and in one event also by the THEMIS E spacecraft. The spacecraft were significantly separated in magnetic local time, demonstrating a huge azimuthal extent of the events. Geomagnetic conditions at the times of the observations were very ...

emec, F.; Hospodarsky, G.; Pickett, J.; ik, O.; Kurth, W.; Kletzing, C.;

YEAR: 2016     DOI: 10.1002/2016JA022774

QP emissions; quasiperiodic emissions; Van Allen Probes

2015

Equatorial noise emissions with quasiperiodic modulation of wave intensity

Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal An ...

emec, F.; Santolik, O.; a, Hrb\; Pickett, J.; Cornilleau-Wehrlin, N.;

YEAR: 2015     DOI: 10.1002/2014JA020816

equatorial noise; magnetosonic waves; quasiperiodic modulation

2005

Wave acceleration of electrons in the Van Allen radiation belts

The Van Allen radiation belts1 are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth\textquoterights magnetic field. Their properties vary according to solar activity2, 3 and they represent a hazard to satellites and humans in space4, 5. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiati ...

Horne, Richard; Thorne, Richard; Shprits, Yuri; Meredith, Nigel; Glauert, Sarah; Smith, Andy; Kanekal, Shrikanth; Baker, Daniel; Engebretson, Mark; Posch, Jennifer; Spasojevic, Maria; Inan, Umran; Pickett, Jolene; Decreau, Pierrette;

YEAR: 2005     DOI: 10.1038/nature03939

Local Acceleration due to Wave-Particle Interaction



  1