Bibliography



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2018

MMS, Van Allen Probes, GOES 13, and Ground Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock

The stimulation of EMIC waves by a magnetospheric compression is perhaps the closest thing to a controlled experiment that is currently possible in magnetospheric physics, in that one prominent factor that can increase wave growth acts at a well-defined time. We present a detailed analysis of EMIC waves observed in the outer dayside magnetosphere by the four Magnetosphere Multiscale (MMS) spacecraft, Van Allen Probe A, and GOES 13, and by four very high latitude ground magnetometer stations in the western hemisphere before, ...

Engebretson, M.; Posch, J.; Capman, N.; Campuzano, N.; elik, P.; Allen, R.; Vines, S.; Anderson, B.; Tian, S.; Cattell, C.; Wygant, J.; Fuselier, S.; Argall, M.; Lessard, M.; Torbert, R.; Moldwin, M.; Hartinger, M.; Kim, H.; Russell, C.; Kletzing, C.; Reeves, G.; Singer, H.;

YEAR: 2018     DOI: 10.1029/2018JA025984

Van Allen Probes

EMIC wave events during the four GEM QARBM challenge intervals

This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM \textquotedblleftQuantitative Assessment of Radiation Belt Modeling\textquotedblright focus group: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near-equatorial magnetosphere and from s ...

Engebretson, M.; Posch, J.; Braun, D.; Li, W.; Ma, Q.; Kellerman, A.; Huang, C.-L.; Kanekal, S.; Kletzing, C.; Wygant, J.; Spence, H.; Baker, D.; Fennell, J.; Angelopoulos, V.; Singer, H.; Lessard, M.; Horne, R.; Raita, T.; Shiokawa, K.; Rakhmatulin, R.; Dmitriev, E.; Ermakova, E.;

YEAR: 2018     DOI: 10.1029/2018JA025505

Van Allen Probes

2017

Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma de ...

Tetrick, S.; Engebretson, M.; Posch, J.; Olson, C.; Smith, C.; Denton, R.; Thaller, S.; Wygant, J.; Reeves, G.; MacDonald, E.; Fennell, J.;

YEAR: 2017     DOI: 10.1002/2016JA023392

EMIC waves; Magnetosphere; Plasmapause; Van Allen Probes

2015

Low-harmonic magnetosonic waves observed by the Van Allen Probes

Purely compressional electromagnetic waves (fast magnetosonic waves), generated at multiple harmonics of the local proton gyrofrequency, have been observed by various types of satellite instruments (fluxgate and search coil magnetometers and electric field sensors), but most recent studies have used data from search coil sensors, and many have been restricted to high harmonics. We report here on a survey of low-harmonic waves, based on electric and magnetic field data from the EFW double probe and EMFISIS fluxgate magnetomet ...

Posch, J.; Engebretson, M.; Olson, C.; Thaller, S.; Breneman, A.; Wygant, J.; Boardsen, S.; Kletzing, C.; Smith, C.; Reeves, G.;

YEAR: 2015     DOI: 10.1002/2015JA021179

equatorial noise; inner magnetosphere; magnetosonic waves; Van Allen Probes; waves in plasmas

Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 hours in MLT

Although most studies of the effects of EMIC waves on Earth\textquoterights outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on February 23, 2014 that extended over 8 hours in UT and over 12 hours in local time, stimulated by a gradual 4-hour rise and subsequent shar ...

Engebretson, M.; Posch, J.; Wygant, J.; Kletzing, C.; Lessard, M.; Huang, C.-L.; Spence, H.; Smith, C.; Singer, H.; Omura, Y.; Horne, R.; Reeves, G.; Baker, D.; Gkioulidou, M.; Oksavik, K.; Mann, I.; Raita, T; Shiokawa, K.;

YEAR: 2015     DOI: 10.1002/2015JA021227

EMIC waves; magnetospheric compressions; Radiation belts; Van Allen Probes

2005

Wave acceleration of electrons in the Van Allen radiation belts

The Van Allen radiation belts1 are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth\textquoterights magnetic field. Their properties vary according to solar activity2, 3 and they represent a hazard to satellites and humans in space4, 5. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiati ...

Horne, Richard; Thorne, Richard; Shprits, Yuri; Meredith, Nigel; Glauert, Sarah; Smith, Andy; Kanekal, Shrikanth; Baker, Daniel; Engebretson, Mark; Posch, Jennifer; Spasojevic, Maria; Inan, Umran; Pickett, Jolene; Decreau, Pierrette;

YEAR: 2005     DOI: 10.1038/nature03939

Local Acceleration due to Wave-Particle Interaction



  1