Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 8 entries in the Bibliography.
Showing entries from 1 through 8
2021 |
Evening side EMIC waves and related proton precipitation induced by a substorm Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The ... Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029091 |
2019 |
Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred ... Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026291 EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes |
2018 |
EMIC wave events during the four GEM QARBM challenge intervals This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM \textquotedblleftQuantitative Assessment of Radiation Belt Modeling\textquotedblright focus group: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near-equatorial magnetosphere and from s ... Engebretson, M.; Posch, J.; Braun, D.; Li, W.; Ma, Q.; Kellerman, A.; Huang, C.-L.; Kanekal, S.; Kletzing, C.; Wygant, J.; Spence, H.; Baker, D.; Fennell, J.; Angelopoulos, V.; Singer, H.; Lessard, M.; Horne, R.; Raita, T.; Shiokawa, K.; Rakhmatulin, R.; Dmitriev, E.; Ermakova, E.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018JA025505 |
2017 |
Energetic electron precipitation and auroral morphology at the substorm recovery phase It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological chan ... Oyama, S.; Kero, A.; Rodger, C.; Clilverd, M.; Miyoshi, Y.; Partamies, N.; Turunen, E.; Raita, T.; Verronen, P.; Saito, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2017 YEAR: 2017   DOI: 10.1002/2016JA023484 auroral patch; EEP; Ionosphere; plasma wave; recovery phase; substorm; Van Allen Probes |
2015 |
Although most studies of the effects of EMIC waves on Earth\textquoterights outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on February 23, 2014 that extended over 8 hours in UT and over 12 hours in local time, stimulated by a gradual 4-hour rise and subsequent shar ... Engebretson, M.; Posch, J.; Wygant, J.; Kletzing, C.; Lessard, M.; Huang, C.-L.; Spence, H.; Smith, C.; Singer, H.; Omura, Y.; Horne, R.; Reeves, G.; Baker, D.; Gkioulidou, M.; Oksavik, K.; Mann, I.; Raita, T; Shiokawa, K.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2015 YEAR: 2015   DOI: 10.1002/2015JA021227 EMIC waves; magnetospheric compressions; Radiation belts; Van Allen Probes |
Electron precipitation from EMIC waves: a case study from 31 May 2013 On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instrument ... Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2015 YEAR: 2015   DOI: 10.1002/2015JA021090 electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite |
We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 unt ... Neal, Jason; Rodger, Craig; Clilverd, Mark; Thomson, Neil; Raita, Tero; Ulich, Thomas; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2015 YEAR: 2015   DOI: 10.1002/2014JA020689 AARDDVARK network; electron precipitation; Radiation belts; subionospheric VLF propagation |
2014 |
Spatial localization and ducting of EMIC waves: Van Allen Probes and ground-based observations On 11 October 2012, during the recovery phase of a moderate geomagnetic storm, an extended interval (> 18 h) of continuous electromagnetic ion cyclotron (EMIC) waves was observed by Canadian Array for Real-time Investigations of Magnetic Activity and Solar-Terrestrial Environment Program induction coil magnetometers in North America. At around 14:15 UT, both Van Allen Probes B and A (65\textdegree magnetic longitude apart) in conjunction with the ground array observed very narrow (ΔL ~ 0.1\textendash0.4) left-hand polarized ... Mann, I.; Usanova, M.; Murphy, K.; Robertson, M.; Milling, D.; Kale, A.; Kletzing, C.; Wygant, J.; Thaller, S.; Raita, T.; Published by: Geophysical Research Letters Published on: 02/2014 YEAR: 2014   DOI: 10.1002/2013GL058581 |
1