Bibliography



Found 16 entries in the Bibliography.


Showing entries from 1 through 16


2019

Cold Plasmaspheric Electrons Affected by ULF Waves in the Inner Magnetosphere: A Van Allen Probes Statistical Study

Six years of Van Allen Probes data are used to investigate cold plasmaspheric electrons affected by ultralow-frequency (ULF) waves in the inner magnetosphere (L<7) including spatial distributions, occurrence conditions, and resonant energy range. Events exhibit a global distribution within L= 4\textendash7 but preferentially occur at L\~5.5\textendash7 in the dayside, while there is higher occurrence rate in the duskside than dawnside. They can occur under different geomagnetic activities and solar wind velocities (VS), but ...

Ren, Jie; Zong, Q.; Zhou, X.; Spence, H.; Funsten, H.; Wygant, J.; Rankin, R.;

YEAR: 2019     DOI: 10.1029/2019JA027009

Cold plasmaspheric electrons; drift-bounce resonance; ULF waves; Van Allen Probes; Wave-particle interaction

2018

Nonlinear drift resonance between charged particles and ultra-low frequency waves: Theory and Observations

In Earth\textquoterights inner magnetosphere, electromagnetic waves in the ultra-low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift-resonance theory, linearization is applied under the assumption of weak wave-particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, ...

Li, Li; Zhou, Xu-Zhi; Omura, Yoshiharu; Wang, Zi-Han; Zong, Qiu-Gang; Liu, Ying; Hao, Yi-Xin; Fu, Sui-Yan; Kivelson, Margaret; Rankin, Robert; Claudepierre, Seth; Wygant, John;

YEAR: 2018     DOI: 10.1029/2018GL079038

drift resonance; nonlinear process; Particle acceleration; Radiation belts; ULF waves; Van Allen Probes; wave-particle interactions

A comparative study of ULF waves\textquoteright role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation

By analyzing observations from Van Allen Probes in its inbound and outbound orbits, we present evidence of coherent enhancement of cold plasmaspheric electrons and ions due to drift-bounce resonance with ULF waves. From 18:00 UT on 28 May 2017 to 10:00 UT on 29 May 2017, newly formed poloidal mode standing ULF waves with significant electric field oscillations were observed in two consecutive orbits when Probe B was travelling inbound. In contrast to observations during outbound orbits, the cold (< 150 eV) electorns measured ...

Ren, Jie; Zong, Qiu-Gang; Miyoshi, Yoshizumi; Rankin, Robert; Spence, Harlan; Funsten, Herbert; Wygant, John; Kletzing, Craig;

YEAR: 2018     DOI: 10.1029/2018JA025255

Cold plasmaspheric electrons acceleration; Drfit-bounce resonance; Modification of electron and ion density profile; Substorm activities; ULF waves; Van Allen Probes

Poloidal mode wave-particle interactions inferred from Van Allen Probes and CARISMA ground-based observations

Ultra-low-frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfv\ en waves detected near the magnetic equator at L\~5.7. Results obtained from simulations reproduce important features of the observations, including a substantial e ...

Wang, C.; Rankin, R.; Wang, Y.; Zong, Q.-G.; Zhou, X.; Takahashi, K.; Marchand, R.; Degeling, A.;

YEAR: 2018     DOI: 10.1029/2017JA025123

ULF wave; drift-resonant; test particle simulation; Van Allen Probes

Van Allen Probes Observation of a Fundamental Poloidal Standing Alfv\ en Wave Event Related to Giant Pulsations

The Van Allen Probes-A spacecraft observed an \~9 mHz ultra-low-frequency wave on 6 October 2012, at L\~ 5.7, in the dawn sector, and very near the magnetic equator. The wave had a strong electric field that was initially stronger in the azimuthal component and later in the radial component, exhibited properties of a fundamental standing Alfv\ en wave, and was associated with giant pulsations observed on the ground near the magnetic field footprint of the spacecraft. The wave was accompanied by oscillations of the flux of en ...

Takahashi, Kazue; Claudepierre, S.; Rankin, Robert; Mann, Ian; Smith, C.;

YEAR: 2018     DOI: 10.1029/2017JA025139

drift resonance; Fundamental standing Alfven wave; Giant pulsation; Proton flux oscillation; Van Allen Probes

2017

Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event ar ...

Ren, Jie; Zong, Q.; Miyoshi, Y.; Zhou, X.; Wang, Y.; Rankin, R.; Yue, C.; Spence, H.; Funsten, H.; Wygant, J.; Kletzing, C.;

YEAR: 2017     DOI: 10.1002/2017JA024316

Cold plasmaspheric electrons; drift-bounce resonance; Plasma instability; Plasmaspheric boundary layer; Substorm-injected protons; ULF waves; Van Allen Probes

Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

We present an analysis of \textquotedblleftboomerang-shaped\textquotedblright pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90o pitch angle electrons, the phase change of the flux modulations across energy exceeds 180o, and increasingly tilts with time. Using estimates of th ...

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; . Y. Fu, S; Spence, H.; Blake, J.; Reeves, G.;

YEAR: 2017     DOI: 10.1002/2017GL074006

drift resonance; interplanetary shock; localized waves; Radiation belts; ULF waves; Van Allen Probes; Wave-particle interaction

2016

Compressional ULF wave modulation of energetic particles in the inner magnetosphere

We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional mag ...

Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; . Y. Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.;

YEAR: 2016     DOI: 10.1002/2016JA022706

Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes

Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblrig ...

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; . Y. Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.;

YEAR: 2016     DOI: 10.1002/2016GL069140

Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes

Structure and Evolution of Electron "Zebra Stripes" in the Inner Radiation Belt

Zebra stripes\textquotedblright are newly found energetic electron energy-spatial (L shell) distributed structure with an energy between tens to a few hundreds keV in the inner radiation belt. Using high-quality measurements of electron fluxes from Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the twin Van Allen Probes, we carry out case and statistical studies from April 2013 to April 2014 to study the structural and evolutionary characteristics of zebra stripes below L = 3. It is revealed that t ...

Liu, Y.; Zong, Q.-G.; Zhou, X.-Z.; Foster, J.; Rankin, R.;

YEAR: 2016     DOI: 10.1002/2015JA022077

electric field; energetic electrons; particle dynamic; Radiation belt; Van Allen Probes; zebra stripes

Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations

Ultralow frequency (ULF) electromagnetic waves in Earth\textquoterights magnetosphere can accelerate charged particles via a process called drift resonance. In the conventional drift-resonance theory, a default assumption is that the wave growth rate is time-independent, positive, and extremely small. However, this is not the case for ULF waves in the real magnetosphere. The ULF waves must have experienced an earlier growth stage when their energy was taken from external and/or internal sources, and as time proceeds the wave ...

Zhou, Xu-Zhi; Wang, Zi-Han; Zong, Qiu-Gang; Rankin, Robert; Kivelson, Margaret; Chen, Xing-Ran; Blake, Bernard; Wygant, John; Kletzing, Craig;

YEAR: 2016     DOI: 10.1002/2016JA022447

drift resonance; Radiation belt; ULF waves; Van Allen Probes; wave growth and damping; Wave-particle interaction

2015

Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere

Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide ene ...

Wang, Chengrui; Rankin, Robert; Zong, Qiugang;

YEAR: 2015     DOI: 10.1002/2014JA020761

drift-bounce resonance; Landau damping; ULF wave

2014

Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations

We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a \textquotedbllefttest-kinetic model ...

Degeling, A.; Rankin, R.; Zong, Q.-G.;

YEAR: 2014     DOI: 10.1002/2013JA019672

adiabatic electron transport; magnetopause buffeting; Radiation belts; ULF waves

2013

Discovery of the action of a geophysical synchrotron in the Earth\textquoterights Van Allen radiation belts

Although the Earth\textquoterights Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency inte ...

Mann, Ian; Lee, E.; Claudepierre, S.; Fennell, J.; Degeling, A.; Rae, I.; Baker, D.; Reeves, G.; Spence, H.; Ozeke, L.; Rankin, R.; Milling, D.; Kale, A.; Friedel, R.; Honary, F.;

YEAR: 2013     DOI: 10.1038/ncomms3795

Van Allen Probes

2008

Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm

[1] The interaction between relativistic, equatorially mirroring electrons and Pc5 Ultra Low Frequency (ULF) waves in the magnetosphere is investigated using a numerical MagnetoHydroDynamic (MHD) model for waves and a test-kinetic model for electron phase space density (PSD). The temporal and spatial characteristics of a ULF wave packet are constrained using ground-based observations of narrowband ULF activity following a geomagnetic storm on 24 March 1991, which occurred from 1200 to 1340 Universal Time (UT). A salient feat ...

Degeling, A.; Rankin, R.;

YEAR: 2008     DOI: 10.1029/2008JA013254

Radial Transport

2007

The effect of ULF compressional modes and field line resonances on relativistic electron dynamics

The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602\text ...

Degeling, A.; Rankin, R.; Kabin, K.; Marchand, R.; Mann, I.R.;

YEAR: 2007     DOI: 10.1016/j.pss.2006.04.039

Radial Transport



  1