Bibliography



Found 15 entries in the Bibliography.


Showing entries from 1 through 15


2019

Comparison of Van Allen Probes Energetic Electron Data with Corresponding GOES-15 Measurements: 2012-2018

Baker, D.N.; Zhao, H.; Li, X.; Kanekal, S.G.; Jaynes, A.N.; Kress, B.T.; Rodriguez, J.V.; Singer, H.J.; Claudepierre, S.G.; Fennell, J.F.; Hoxie, V.;

YEAR: 2019     DOI: 10.1029/2019JA027331

energetic particles; Magnetosphere:Inner; Magnetospheric configuration; Radiation belts; Space weather; Van Allen Probes

Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity

Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred ...

Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.;

YEAR: 2019     DOI: 10.1029/2018JA026291

EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes

Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss

Whistler mode waves are important for precipitating energetic electrons into Earth\textquoterights upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satel ...

Li, W.; Shen, X.-C.; Ma, Q.; Capannolo, L.; Shi, R.; Redmon, R.; Rodriguez, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2019     DOI: 10.1029/2019GL082095

electron precipitation; hiss; plasmaspheric plume; Plume wave; Van Allen Probes; whistler mode wave

2018

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the dusks ...

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements

Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non-storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes-A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp-01, which detected simultan ...

Capannolo, L.; Li, W.; Ma, Q.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Reeves, G.;

YEAR: 2018     DOI: 10.1029/2018GL078604

EMIC waves; energetic particle precipitation; pitch angle scattering; Radiation belts; Van Allen Probes; wave particle interactions

2015

Giant pulsations on the afternoonside: Geostationary satellite and ground observations

Giant pulsations (Pgs) are a special class of oscillations recognized in ground magnetometer records as exhibiting highly regular sinusoidal waveforms in the east-west component with periods around 100s. Previous statistical studies showed that Pgs occur almost exclusively on the morningside with peak occurrence in the postmidnight sector. In this paper, we present observations of Pgs extending to the afternoonside, using data from the GOES13 and 15 geostationary satellites and multiple ground magnetometers located in North ...

Motoba, Tetsuo; Takahashi, Kazue; Rodriguez, Juan; Russell, Christopher;

YEAR: 2015     DOI: 10.1002/2015JA021592

giant pulsations; ground-space conjunction; wave-particle interactions

The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute m ...

Zhao, H.; Li, X.; Baker, D.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Rodriguez, J.;

YEAR: 2015     DOI: 10.1002/2015JA021533

Geomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes

Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes

Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen ...

Jaynes, A.N.; Baker, D.N.; Singer, H.J.; Rodriguez, J.V.; Loto\textquoterightaniu, T.M.; Ali, A.; Elkington, S.R.; Li, X.; Kanekal, S.G.; Fennell, J.F.; Li, W.; Thorne, R.M.; Kletzing, C.A.; Spence, H.E.; Reeves, G.D.;

YEAR: 2015     DOI: 10.1002/2015JA021234

Radiation belts; relativistic electrons; substorms; ULF waves; Van Allen Probes; VLF waves

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure ( ...

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event.

Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ - 40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observe ...

Gkioulidou, Matina; Ohtani, S.; Mitchell, D.; Ukhorskiy, A.; Reeves, G.; Turner, D.; Gjerloev, J.; e, Nos\; Koga, K.; Rodriguez, J.; Lanzerotti, L.;

YEAR: 2015     DOI: 10.1002/2014JA020872

inner magnetosphere; Van Allen Probes

2014

Investigation of EMIC wave scattering as the cause for the BARREL January 17, 2013 relativistic electron precipitation event: a quantitative comparison of simulation with observations

Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We ...

Li, Zan; Millan, Robyn; Hudson, Mary; Woodger, Leslie; Smith, David; Chen, Yue; Friedel, Reiner; Rodriguez, Juan; Engebretson, Mark; Goldstein, Jerry; Fennell, Joseph; Spence, Harlan;

YEAR: 2014     DOI: 10.1002/2014GL062273

BARREL; EMIC waves; GOES; pitch angle diffusion; RBSP; relativistic electron precipitation; Van Allen Probes

Meeting Report: Solar Energetic Particle Measurements Intercalibration Workshop, 11 April 2014, Boulder, Colorado

Following the conclusion of the 2014 Space Weather Week in Boulder, Colorado, the NOAA National Geophysical Data Center and Space Weather Prediction Center cohosted a 1 day workshop on the intercalibration of solar energetic particle (SEP) measurements. The overall purpose of this workshop was to discuss the intercalibration of SEP measurements from different instruments and different spacecraft, to foster new cooperative intercalibration efforts, and to identify a path forward for establishing a set of intercalibration guid ...

Rodriguez, Juan; Onsager, Terrance; Heynderickx, Daniel; Jiggens, Piers;

YEAR: 2014     DOI: 10.1002/swe.v12.1110.1002/2014SW001134

cross calibration; interoperability; Solar Energetic Particles

On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event

On 30 September 2012, a flux \textquotedblleftdropout\textquotedblright occurred throughout Earth\textquoterights outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA\textquoterights Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA\textquoterights Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, eq ...

Turner, D.; Angelopoulos, V.; Morley, S.; Henderson, M.; Reeves, G.; Li, W.; Baker, D.; Huang, C.-L.; Boyd, A.; Spence, H.; Claudepierre, S.; Blake, J.; Rodriguez, J.;

YEAR: 2014     DOI: 10.1002/2013JA019446

dropouts; inner magnetosphere; loss; Radiation belts; relativistic electrons; Van Allen Probes

Competing source and loss mechanisms due to wave-particle interactions in Earth\textquoterights outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm

Drastic variations of Earth\textquoterights outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA\textquoterights Van Allen Probes, THEMIS, and SAMPEX missions and NOAA\textquoterights GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm\textquoterights main phase drop ...

Turner, D.; Angelopoulos, V.; Li, W.; Bortnik, J.; Ni, B.; Ma, Q.; Thorne, R.; Morley, S.; Henderson, M.; Reeves, G.; Usanova, M.; Mann, I.; Claudepierre, S.; Blake, J.; Baker, D.; Huang, C.-L.; Spence, H.; Kurth, W.; Kletzing, C.; Rodriguez, J.;

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2014JA019770

Van Allen Probes

Signature modeling for LWIR spectrometer

Hyperspectral longwave infrared (LWIR) is used for a variety of targets such as gases and solids with the advantage of day or night data collections. A longwave infrared system must have the ability to convert the radiance data it measures to emissivity prior to running a detection algorithm, commonly called a temperature-emissivity separation (TES) algorithm. Key parts of this TES algorithm are accounting for the reflected down-welling radiation from the atmosphere, upwelling background radiance removal, and most importantl ...

Firpi, Alexer; Oxenrider, Jason; Ramachandran, Vignesh; Mitchell, Herbert; Tzeng, Nigel; Rodriguez, Benjamin;

YEAR: 2014     DOI: 10.1109/AERO.2014.6836439

hyperspectral imaging; infrared imaging; infrared spectrometers; radiance data conversion



  1