Bibliography



Found 128 entries in the Bibliography.


Showing entries from 1 through 50


2020

The Dynamics of the Inner Boundary of the Outer Radiation Belt During Geomagnetic Storms

Abstract We investigate the shapes of the inner boundary of the outer radiation belt during different geomagnetic storm phases using energetic electron observations from Van Allen Probes. The case of two consecutive but isolated storms in April 2016 shows that (a) the inner boundary, as a function of L shell and energy, exhibits a “V-shaped” form with the energetic electrons showing a kappa-like energy spectrum (electron flux steeply falling with increasing energies), whereas it is in a “S-shaped” form as the energet ...

Shi, Xiaofei; Ren, Jie; Zong, Q.;

YEAR: 2020     DOI: 10.1029/2019JA027309

Van Allen Probes

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Episodic Occurrence of Field-Aligned Energetic Ions on the Dayside

The tens of kiloelectron volt ions observed in the ring current region at L ~ 3\textendash7 generally have pancake pitch angle distributions, that is, peaked at 90\textdegree. However, in this study, by using the Van Allen Probe observations on the dayside, unexpectedly, we have found that about 5\% time, protons with energies of ~30 to 50 keV show two distinct populations, having an additional field-aligned population overlapping with the original pancake population. The newly appearing field-aligned populations have higher ...

Yue, Chao; Bortnik, Jacob; Zou, Shasha; Nishimura, Yukitoshi; Foster, John; Coppeans, Thomas; Ma, Qianli; Zong, Qiugang; Hull, A.; Henderson, Mike; Reeves, Geoffrey; Spence, Harlan;

YEAR: 2020     DOI: 10.1029/2019GL086384

Van Allen Probes

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

2019

Multiharmonic Toroidal Standing Alfv\ en Waves in the Midnight Sector Observed During a Geomagnetically Quiet Period

Excitation of toroidal mode standing Alfv\ en waves in the midnight sector of the inner magnetosphere in association with substorms is well documented, but studies are sparse on dayside sources for the waves. This paper reports observation of midnight toroidal waves by the Van Allen Probe B spacecraft during a geomagnetically quiet period on 12\textemdash13 May 2013. The spacecraft detected toroidal waves excited at odd harmonics below 30 mHz as it moved within the plasmasphere from ~2100 magnetic local time (MLT) to ~0030 M ...

Takahashi, Kazue; Vellante, Massimo; Del Corpo, Alfredo; Claudepierre, Seth; Kletzing, Craig; Wygant, John; Koga, Kiyokazu;

YEAR: 2019     DOI: 10.1029/2019JA027370

Ion foreshock; Nightside magnetosphere; Toroidal Alfven waves; Van Allen Probe; Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5

We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three-dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave-particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering ...

Hua, Man; Li, Wen; Ma, Qianli; Ni, Binbin; Nishimura, Yukitoshi; Shen, Xiao-Chen; Li, Haimeng;

YEAR: 2019     DOI: 10.1029/2019GL084822

3-D radial belt modeling; Butterfly pitch angle distribution; Electron flux enhancement; inner belt and slot region; Inward radial diffusion; local wave-particle interactions; Van Allen Probes

Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations

Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave el ...

Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi;

YEAR: 2019     DOI: 10.1029/2019GL083118

Chorus wave; Magnetosphere; Scale size; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ...

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ...

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ...

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

Statistical Study of Selective Oxygen Increase in High-Energy Ring Current Ions During Magnetic Storms

Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence condit ...

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.;

YEAR: 2019     DOI: 10.1029/2018JA026168

Magnetic Storms; Oxygen ions; ring current; Van Allen Probes

Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss

Whistler mode waves are important for precipitating energetic electrons into Earth\textquoterights upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satel ...

Li, W.; Shen, X.-C.; Ma, Q.; Capannolo, L.; Shi, R.; Redmon, R.; Rodriguez, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2019     DOI: 10.1029/2019GL082095

electron precipitation; hiss; plasmaspheric plume; Plume wave; Van Allen Probes; whistler mode wave

Low-Energy (+ Ion Outflow Directly Into the Inner Magnetosphere: Van Allen Probes Observations

The heavy ion component of the low-energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low-energy (

Gkioulidou, Matina; Ohtani, S.; . Y. Ukhorskiy, A; Mitchell, D.; Takahashi, K.; Spence, H.; Wygant, J.; Kletzing, C.; Barnes, R.;

YEAR: 2019     DOI: 10.1029/2018JA025862

inner magnetosphere; O+ outflow; Van Allen Probes

Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes

Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal an ...

Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff;

YEAR: 2019     DOI: 10.1029/2018JA026041

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves

A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail

To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen ...

Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.;

YEAR: 2019     DOI: 10.1029/2018JA025886

EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes

2018

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ...

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ...

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ...

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ...

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ...

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Prob ...

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Prob ...

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Roles of Flow Braking, Plasmaspheric Virtual Resonances, and Ionospheric Currents in Producing Ground Pi2 Pulsations

In one model, Pi2 pulsations are driven pulse by pulse by fast mode pulses that are launched as periodic bursty bulk flows brake when they approach the Earth. We have examined this model by analyzing data from multiple spacecraft and ground magnetometers for a Pi2 pulsation event. During the event, which started at \~2226 UT on 8 November 2014, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-D detected an \~2 min period plasma bulk flow oscillation in the near-Earth magnetotail, while THEMIS-E an ...

Takahashi, Kazue; Hartinger, Michael; Vellante, Massimo; Heilig, azs; Lysak, Robert; Lee, Dong-Hun; Smith, Charles;

YEAR: 2018     DOI: 10.1029/2018JA025664

Van Allen Probes

Magnetospheric source region of auroral finger-like structures observed by the RBSP-A satellite

Auroral finger-like structures appear equatorward of the auroral oval in the diffuse auroral region and contribute to the auroral fragmentation into patches. A previous report of the first conjugate observation of auroral finger-like structures using a THEMIS GBO camera and the THEMIS-E satellite at a radial distance of \~8 RE showed anti-phase oscillations of magnetic and plasma pressures in the dawnside plasma sheet. In the present study, we report another simultaneous observation of auroral finger-like structures at Gilla ...

Nishi, Katsuki; Shiokawa, Kazuo; Spence, Harlan;

YEAR: 2018     DOI: 10.1029/2018JA025480

Auroral finger-like structure; inner magnetosphere; pressure-driven instability; Van Allen Probes

Magnetospheric source region of auroral finger-like structures observed by the RBSP-A satellite

Auroral finger-like structures appear equatorward of the auroral oval in the diffuse auroral region and contribute to the auroral fragmentation into patches. A previous report of the first conjugate observation of auroral finger-like structures using a THEMIS GBO camera and the THEMIS-E satellite at a radial distance of \~8 RE showed anti-phase oscillations of magnetic and plasma pressures in the dawnside plasma sheet. In the present study, we report another simultaneous observation of auroral finger-like structures at Gilla ...

Nishi, Katsuki; Shiokawa, Kazuo; Spence, Harlan;

YEAR: 2018     DOI: 10.1029/2018JA025480

Auroral finger-like structure; inner magnetosphere; pressure-driven instability; Van Allen Probes

EMIC wave events during the four GEM QARBM challenge intervals

This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM \textquotedblleftQuantitative Assessment of Radiation Belt Modeling\textquotedblright focus group: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near-equatorial magnetosphere and from s ...

Engebretson, M.; Posch, J.; Braun, D.; Li, W.; Ma, Q.; Kellerman, A.; Huang, C.-L.; Kanekal, S.; Kletzing, C.; Wygant, J.; Spence, H.; Baker, D.; Fennell, J.; Angelopoulos, V.; Singer, H.; Lessard, M.; Horne, R.; Raita, T.; Shiokawa, K.; Rakhmatulin, R.; Dmitriev, E.; Ermakova, E.;

YEAR: 2018     DOI: 10.1029/2018JA025505

Van Allen Probes

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the dusks ...

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the dusks ...

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the dusks ...

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

A comparative study of ULF waves\textquoteright role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation

By analyzing observations from Van Allen Probes in its inbound and outbound orbits, we present evidence of coherent enhancement of cold plasmaspheric electrons and ions due to drift-bounce resonance with ULF waves. From 18:00 UT on 28 May 2017 to 10:00 UT on 29 May 2017, newly formed poloidal mode standing ULF waves with significant electric field oscillations were observed in two consecutive orbits when Probe B was travelling inbound. In contrast to observations during outbound orbits, the cold (< 150 eV) electorns measured ...

Ren, Jie; Zong, Qiu-Gang; Miyoshi, Yoshizumi; Rankin, Robert; Spence, Harlan; Funsten, Herbert; Wygant, John; Kletzing, Craig;

YEAR: 2018     DOI: 10.1029/2018JA025255

Cold plasmaspheric electrons acceleration; Drfit-bounce resonance; Modification of electron and ion density profile; Substorm activities; ULF waves; Van Allen Probes

Highly Oblique Lower-Band Chorus Statistics: Dependencies of Wave Power on Refractive Index and Geomagnetic Activity

We use 3 years of Van Allen Probes observations of highly oblique lower-band chorus waves at low latitudes over L = 4\textendash6 to provide a comprehensive statistics of the distribution of their magnetic and electric powers and full energy density as a function of wave refractive index N, L shell, and geomagnetic activity AE. We use the refractive index calculated either in the cold plasma approximation or in the quasi-electrostatic (hot plasma) approximation and either observed wave electric fields or corrected wave elect ...

Shi, R.; Mourenas, D.; Artemyev, A.; Li, W.; Ma, Q.;

YEAR: 2018     DOI: 10.1029/2018JA025337

oblique chorus; refractive index; Van Allen Probes

Response of Different Ion Species to Local Magnetic Dipolarization Inside Geosynchronous Orbit

This paper examines how hydrogen, helium and oxygen (H, He and O) ion fluxes at 1\textendash1000 keV typically respond to local magnetic dipolarization inside geosynchronous orbit (GEO). We extracted 144 dipolarizations which occurred at magnetic inclination > 30\textdegree from the 2012\textendash2016 tail seasons\textquoteright observations of the Van Allen Probes spacecraft and then defined typical flux changes of these ion species by performing a superposed epoch analysis. On average, the dipolarization inside GEO is acc ...

Motoba, T.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A.; Mitchell, D.; Takahashi, K.; Lanzerotti, L.; Kletzing, C.; Spence, H.; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018JA025557

deep inside geosynchronous orbit; dipolarizations; Ion injections; ion species; Van Allen Probes

Spatial Development of the Dipolarization Region in the Inner Magnetosphere

The present study examines dipolarization events observed by the Van Allen Probes within 5.8 RE from Earth. It is found that the probability of occurrence is significantly higher in the dusk-to-midnight sector than in the midnight-to-dawn sector, and it deceases sharply earthward. A comparison with observations made at nearby satellites shows that dipolarization signatures are often highly correlated (c.c. > 0.8) within 1 hr in MLT and 1 RE in RXY, and the dipolarization region expands earthward and westward in the dusk-to-m ...

Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Singer, H.;

YEAR: 2018     DOI: 10.1029/2018JA025443

Dipolarization; injection; inner magnetosphere; R1 and R2 currents; substorm current wedge; substorms; Van Allen Probes

Poloidal mode wave-particle interactions inferred from Van Allen Probes and CARISMA ground-based observations

Ultra-low-frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfv\ en waves detected near the magnetic equator at L\~5.7. Results obtained from simulations reproduce important features of the observations, including a substantial e ...

Wang, C.; Rankin, R.; Wang, Y.; Zong, Q.-G.; Zhou, X.; Takahashi, K.; Marchand, R.; Degeling, A.;

YEAR: 2018     DOI: 10.1029/2017JA025123

ULF wave; drift-resonant; test particle simulation; Van Allen Probes

Van Allen Probes Observation of a Fundamental Poloidal Standing Alfv\ en Wave Event Related to Giant Pulsations

The Van Allen Probes-A spacecraft observed an \~9 mHz ultra-low-frequency wave on 6 October 2012, at L\~ 5.7, in the dawn sector, and very near the magnetic equator. The wave had a strong electric field that was initially stronger in the azimuthal component and later in the radial component, exhibited properties of a fundamental standing Alfv\ en wave, and was associated with giant pulsations observed on the ground near the magnetic field footprint of the spacecraft. The wave was accompanied by oscillations of the flux of en ...

Takahashi, Kazue; Claudepierre, S.; Rankin, Robert; Mann, Ian; Smith, C.;

YEAR: 2018     DOI: 10.1029/2017JA025139

drift resonance; Fundamental standing Alfven wave; Giant pulsation; Proton flux oscillation; Van Allen Probes

Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

A poloidal Pc4 wave and proton flux oscillations are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux oscillations are observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of the poloidal Pc4 wave. We find pitch angle and energy dispersion in the phase difference between the poloidal magnetic field and the proton flux oscillations, which are features of drift-bounce resonance. We estimate the resonance energy to ...

Oimatsu, S.; e, M.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; Smith, C.; MacDowall, R.; Mitchell, D.;

YEAR: 2018     DOI: 10.1029/2017JA025087

Van Allen Probes

Observation and Numerical Simulation of Cavity Mode Oscillations Excited by an Interplanetary Shock

Cavity mode oscillations (CMOs) are basic magnetohydrodynamic eigenmodes in the magnetosphere predicted by theory and are expected to occur following the arrival of an interplanetary shock. However, observational studies of shock-induced CMOs have been sparse. We present a case study of a dayside ultra-low-frequency (ULF) wave event that exhibited CMO properties. The event occurred immediately following the arrival of an interplanetary shock at 0829 UT on 15 August 2015. The shock was observed in the solar wind by the Time H ...

Takahashi, Kazue; Lysak, Robert; Vellante, Massimo; Kletzing, Craig; Hartinger, Michael; Smith, Charles;

YEAR: 2018     DOI: 10.1002/2017JA024639

Cavity mode oscillations; interplanetary shock; Van Allen Probes

Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification

We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southwa ...

Keika, Kunihiro; Seki, Kanako; e, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Manweiler, Jerry;

YEAR: 2018     DOI: 10.1002/2017JA024462

enhancements of oxygen ions of ionospheric origin; plasma transport from the plasma sheet into the inner magnetosphere; RBSPICE; unexpected intensification of the magnetic storm; Van Allen Probes



  1      2      3