Bibliography



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2021

Whistlers in the Plasmasphere

Abstract We study packages of VLF whistler-mode waves observed by the Van Allen Probes satellites in the equatorial plasmasphere. We demonstrate that the main mechanism providing localization of these waves inside relatively broad (>1 RE across the ambient magnetic field) magnetospheric regions is a combined effect of the transverse gradients in the plasma density and the ambient magnetic field. The criterion for the wave trapping by these gradients is the same as for the wave trapping inside a high-density duct with a symme ...

Streltsov, Anatoly;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028933

density inhomogeneity; duct; Plasmapause; plasmasphere; VLF waves; whistler; Van Allen Probes

2017

Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume

We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the p ...

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

Van Allen Probes Observations of Structured Whistler-mode Activity and Coincident Electron Landau Acceleration Inside a Remnant Plasmaspheric Plume

We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the ...

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers



  1