Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2020 |
The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ... Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL089962 probabilistic methods; stochastic parameterization; Van Allen Probes |
2019 |
Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and co ... Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.; YEAR: 2019   DOI: 10.1029/2018JA026401 empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions |
2013 |
The Balloon Array for RBSP Relativistic Electron Losses (BARREL) BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively ... Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.; YEAR: 2013   DOI: 10.1007/s11214-013-9971-z |
1