Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 70 entries in the Bibliography.


Showing entries from 1 through 50


2021

Can Earth’s magnetotail plasma sheet produce a source of relativistic electrons for the radiation belts?

Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ...

Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey;

Published by: Geophysical Research Letters      Published on: 09/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL095495

Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes

A Multi-instrument Study of a Dipolarization Event in the Inner Magnetosphere

Abstract A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on 22 September 2018. The spacecraft were located in the inner magnetosphere at L ∼ 6 − 7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was ∼ 1RE. Gradual dipolarization or an increase of the northward component BZ of the background field occurred on a timescale of minutes. Exploration of energization and Radi ...

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Cohen, I.; Cooper, M.; Ergun, R.; Farrugia, C.; Fennell, J.; Fuselier, S.; Gkioulidou, M.; Khotyaintsev, Yu.; Lindqvist, P.-A.; Matsuoka, A.; Russell, C.; Shoji, M.; Strangeway, R.; Turner, D.; Vaith, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029294

Dipolarization; inner magnetosphere; Multiple Scale Dynamics; Van Allen Probes

Investigating the link between outer radiation belt losses and energetic electron escape at the magnetopause: A case study using multi-mission observations and simulations

Abstract Radiation belt flux dropout events are sudden and often significant reductions in high-energy electrons from Earth’s outer radiation belts. These losses are theorized to be due to interactions with the dayside magnetopause and possibly connected to observations of escaping magnetospheric particles. This study focuses on radiation belt losses during a moderate-strength, nonstorm dropout event on 21 November 2016. The potential loss mechanisms and the linkage to dayside escape are investigated using combined energet ...

Cohen, I.; Turner, D.; Michael, A.; Sorathia, K.; . Y. Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029261

Radiation belt; Magnetospheric escape; energetic electrons; Flux dropout events; test particle simulations; Van Allen Probes

2020

Characteristics of Electron Precipitation During 40 Energetic Electron Injections Inferred via Subionospheric VLF Signal Propagation

Energetic electron injection events are associated with energetic electron precipitation (EEP) through possible resonant wave-particle interactions. Previous studies confirm the impacts of injection-driven precipitation on observed amplitude/phase of subionospheric VLF (very low frequency) signals transmitted from distant artificial transmitters. Currently, there are substantial uncertainties on precipitation characteristics and flux during injection events. In this work we study 40 injection events selected by Van Allen Pro ...

Ghaffari, R.; Cully, C.; Turner, D.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027233

Van Allen Probes

Cross-Scale Quantification of Storm-Time Dayside Magnetospheric Magnetic Flux Content

A clear understanding of storm-time magnetospheric dynamics is essential for a reliable storm forecasting capability. The dayside magnetospheric response to an interplanetary coronal mass ejection (ICME; dynamic pressure Pdyn > 20 nPa and storm-time index SYM-H < −150 nT) is investigated using in situ OMNI, Geotail, Cluster, MMS, GOES, Van Allen Probes, and THEMIS measurements. The dayside magnetic flux content is directly quantified from in situ magnetic field measurements at different radial distances. The arrival ...

Akhavan-Tafti, M.; Fontaine, D.; Slavin, J.; Le Contel, O.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028027

interplanetary coronal mass ejection; magnetic flux quantification; cross-scale observations; flux transfer event; Dungey cycle; Geomagnetic storm; Van Allen Probes

Simulations of Electron Flux Oscillations as Observed by MagEIS in Response to Broadband ULF Waves

Coherent electron flux oscillations of hundreds of keV are often observed by the Van Allen Probes in the magnetosphere during quiet times in association with ultralow frequency (ULF) waves. They are observed in the form of periodic flux fluctuations, with a drift frequency that is energy dependent, but are not associated with drift echoes following storm- or substorm-related energetic particle injections. Instead, they are associated with the resonant interaction of electrons with ULF waves and are an indication of ongoing e ...

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Khoo, Leng; Turner, Drew; Liu, Wenlong; Claudepierre, Seth;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027798

electron flux oscillations; ULF waves; Magnetosphere; Radiation belts; radial diffusion; particle tracing simulations; Van Allen Probes

2019

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Storm Time Depletions of Multi-MeV Radiation Belt Electrons Observed at Different Pitch Angles

During geomagnetic storms, the rapid depletion of the high-energy (several MeV) outer radiation belt electrons is the result of loss to the interplanetary medium through the magnetopause, outward radial diffusion, and loss to the atmosphere due to wave-particle interactions. We have performed a statistical study of 110 storms using pitch angle resolved electron flux measurements from the Van Allen Probes mission and found that inside of the radiation belt (L* = 3 - 5) the number of storms that result in depletion of electron ...

. Y. Drozdov, A; Aseev, N.; Effenberger, F.; Turner, D.; Saikin, A.; . Y. Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027332

EMIC waves; multi-MeV electrons; Radiation belts; Van Allen Probes

Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections

We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15\textendash22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and ...

Kilpua, E.; Turner, D.; Jaynes, A.; Hietala, H.; Koskinen, H.; Osmane, A.; Palmroth, M.; Pulkkinen, T.; Vainio, R.; Baker, D.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026238

interplanetary coronal mass ejections; magnetospheric storm; magnetospheric waves; Outer Belt; Radiation belts; Solar wind; Van Allen Probes

Electron intensity measurements by the Cluster/RAPID/IES instrument in Earth\textquoterights radiation belts and ring current

The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth\textquoterights magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high-energy electrons (<400 keV) and inner-zone protons (230-630 keV) in the radiation belts and ring current, the data have been rarely used for inner-magnetospheric science. The current paper presents two ...

Smirnov, A.; Kronberg, E.; Latallerie, F.; Daly, P.; Aseev, N.; . Y. Shprits, Y; Kellerman, A.; Kasahara, S.; Turner, D.; Taylor, M.;

Published by: Space Weather      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018SW001989

electrons; Radiation belts; Solar Cycle; Space weather; Van Allen Probes

Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright

Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.;

Published by: Nature Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1038/nphys4351

Van Allen Probes

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 ...

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we ...

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

2018

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle ...

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; . Y. Drozdov, A; Villa, J.; . Y. Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; . Y. Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolut ...

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Evidence of Microbursts Observed Near the Equatorial Plane in the Outer Van Allen Radiation Belt

We present the first evidence of electron microbursts observed near the equatorial plane in Earth\textquoterights outer radiation belt. We observed the microbursts on March 31st, 2017 with the Magnetic Electron Ion Spectrometer and RBSP Ion Composition Experiment on the Van Allen Probes. Microburst electrons with kinetic energies of 29-92 keV were scattered over a substantial range of pitch angles, and over time intervals of 150-500 ms. Furthermore, the microbursts arrived without dispersion in energy, indicating that they w ...

Shumko, Mykhaylo; Turner, Drew; O\textquoterightBrien, T.; Claudepierre, Seth; Sample, John; Hartley, D.; Fennell, Joseph; Blake, Bernard; Gkioulidou, Matina; Mitchell, Donald;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL078451

Van Allen Probes

What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era

We survey radiation belt enhancement events during the Van Allen Probes era to determine what mechanism is the dominant cause of enhancements and where it is most effective. Two primary mechanisms have been proposed: (1) betatron/Fermi acceleration due to the Earthward radial transport of electrons which produces monotonic gradients in phase space density (PSD) and (2) \textquotedblleftlocal acceleration" due to gyro/Landau resonant interaction with electromagnetic waves which produces radially localized, growing peaks in PS ...

Boyd, A.J.; Turner, D.L.; Reeves, G.D.; Spence, H.E.; Baker, D.N.; Blake, J.B.;

Published by: Geophysical Research Letters      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018GL077699

Local Acceleration; Phase space density; Radiation belt; THEMIS; Van Allen Probes

Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop

It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large-scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F-18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potenti ...

Lejosne, ène; Kunduri, B.; Mozer, F.; Turner, D.;

Published by: Geophysical Research Letters      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2018GL077969

adiabatic invariants; drift paths; electric fields; injections; SAPS; Van Allen Probes

The global statistical response of the outer radiation belt during geomagnetic storms

Using the total radiation belt electron content calculated from Van Allen Probe phase space density (PSD), the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using PSD reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and non-adiabatic effects, and revealing a clear modality and repeatable sequence of events in storm-time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ) depe ...

Murphy, Kyle; Watt, C.; Mann, Ian; Rae, Jonathan; Sibeck, David; Boyd, A.; Forsyth, C.; Turner, D.; Claudepierre, S.; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 04/2018

YEAR: 2018     DOI: 10.1002/2017GL076674

Geomagnetic storms; magnetospheric dynamics; Radiation belts; Solar Wind-Magnetosphere Coupling; statistical analysis; Van Allen Probes

2017

Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus ...

Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017GL075001

Chorus; conjunction; FIREBIRD; microburst; Van Allen Probes

Van Allen Probes measurements of energetic particle deep penetration into the low L region (L<4) during the storm on 8 April 2016

Using measurements from the Van Allen Probes, a penetration event of 10s \textendash 100s of keV electrons and 10s of keV protons into the low L-shells (L<4) is studied. Timing and magnetic local time (MLT) differences of energetic particle deep penetration are unveiled and underlying physical processes are examined. During this event, both proton and electron penetrations are MLT-asymmetric. The observed MLT difference of proton penetration is consistent with convection of plasma sheet protons, suggesting enhanced convectio ...

Zhao, H.; Baker, D.; Califf, S.; Li, X.; Jaynes, A.; Leonard, T.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017JA024558

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wa ...

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The s ...

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; . Y. Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Multipoint observations of energetic particle injections and substorm activity during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes

This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex serie ...

Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; . Y. Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024554

energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions

Diffusive transport of several hundred keV electrons in the Earth\textquoterights slot region

We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusi ...

Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Spence, H.; Turner, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024452

Electron transport; Energetic electron diffusion; pitch angle scattering; Slot region dynamics; Van Allen Probes; Van Allen Probes observation; Waves in plasmasphere

Dominance of high energy (>150 keV) heavy ion intensities in Earth\textquoterights middle to outer magnetosphere

Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale (MMS) mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically ...

Cohen, Ian; Mitchell, Donald; Kistler, Lynn; Mauk, Barry; Anderson, Brian; Westlake, Joseph; Ohtani, Shinichi; Hamilton, Douglas; Turner, Drew; Blake, Bern; Fennell, Joseph; Jaynes, Allison; Leonard, Trevor; Gerrard, Andrew; Lanzerotti, Louis; Allen, Robert; Burch, James;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024351

energetic ion composition; magnetospheric ion composition; Magnetospheric Multiscale (MMS); outer magnetosphere; ring current composition; suprathermal ions; Van Allen Probes

ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2013 and 2015 Storms

The 17 March 2015 St. Patrick\textquoterights Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in ...

Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2016JA023846

March 2013; March 2015; radial diffusion; Radiation belt; Van Allen Probes

Effects of whistler mode hiss waves in March 2013

We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 ...

Ripoll, J.-F.; Santol?k, O.; Reeves, G.; Kurth, W.; Denton, M.; Loridan, V.; Thaller, S.; Kletzing, C.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2017JA024139

diffusion coefficients; electron lifetimes; energy-structure; Radiation belts; Van Allen Probes; Whistler-mode hiss

Spatial Scale and Duration of One Microburst Region on 13 August 2015

Prior studies of microburst precipitation have largely relied on estimates of the spatial scale and temporal duration of the microburst region in order to determine the radiation belt loss rate of relativistic electrons. These estimates have often relied on the statistical distribution of microburst events. However, few studies have directly observed the spatial and temporal evolution of a single microburst event. In this study, we combine BARREL balloon-borne X-ray measurements with FIREBIRD-II and AeroCube-6 CubeSat electr ...

Anderson, B.; Shekhar, S.; Millan, R.; Crew, A.; Spence, H.; Klumpar, D.; Blake, J.; O\textquoterightBrien, T.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023752

Microbursts; Radiation Belt Dynamics; Van Allen Probes; whistler mode chorus waves

The hidden dynamics of relativistic electrons (0.7-1.5~MeV) in the inner zone and slot region

We present measurements of relativistic electrons (0.7\textendash1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that \~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As \~1 MeV e ...

Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Clemmons, J.; Looper, M.; Mazur, J.; Roeder, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023719

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

The hidden dynamics of relativistic electrons (0.7-1.5~MeV) in the inner zone and slot region

We present measurements of relativistic electrons (0.7\textendash1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that \~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As \~1 MeV e ...

Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Clemmons, J.; Looper, M.; Mazur, J.; Roeder, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023719

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons

The most significant unknown regarding relativistic electrons in Earth\textquoterights outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurem ...

Schiller, Q.; Tu, W.; Ali, A.; Li, X.; Godinez, H.; Turner, D.; Morley, S.; Henderson, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023093

CubeSat; data assimilation; electron; event specific; Modeling; Radiation belt; Van Allen Probes

Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event

Particle injections in the magnetosphere transport electrons and ions from the magnetotail to the radiation belts. Here we consider generation mechanisms of \textquotedblleftdispersionless\textquotedblright injections, namely, those with simultaneous increase of the particle flux over a wide energy range. In this study we take advantage of multisatellite observations which simultaneously monitor Earth\textquoterights magnetospheric dynamics from the tail toward the radiation belts during a substorm event. Dispersionless inje ...

Kronberg, E.; Grigorenko, E.; Turner, D.; Daly, P.; Khotyaintsev, Y.; Kozak, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023551

Acceleration; current wedge; Dipolarization; particle injections; substorm; ULF waves; Van Allen Probes

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ...

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kaneka, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1029/1999JA900445

energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Temperature of the plasmasphere from Van Allen Probes HOPE

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023047

plasmasphere; Van Allen Probes

Temperature of the plasmasphere from Van Allen Probes HOPE

We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional math formula drifting Maxwellian and that the potential field and motion of the spacecraft may ...

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023047

plasmasphere; Van Allen Probes

2016

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy fr ...

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023600

2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially ...

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock

Trapped electrons in Earth\textquoterights outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impac ...

Kanekal, S.; Baker, D.; Fennell, J.; Jones, A.; Schiller, Q.; Richardson, I.; Li, X.; Turner, D.; Califf, S.; Claudepierre, S.; Wilson, L.; Jaynes, A.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022596

electron; energizaiton; IP shock; ultrarelativsti; Van Allen Probes

Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere

We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22\textendash23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolut ...

Keika, Kunihiro; Seki, Kanako; e, Masahito; Machida, Shinobu; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Turner, Drew; Spence, Harlan; Larsen, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022384

adiabatic transport from the plasma sheet; oxygen ions of ionospheric origin; preconditions of magnetic storms; preexisting oxygen ions trapped in the inner magnetosphere; Van Allen Probes; Van Allen Probes RBSPICE observations

Global ULF wave analysis of radial diffusion coefficients using a global MHD model for the 17 March 2015 storm

The 17\textendash18 March 2015 storm is the largest geomagnetic storm in the Van Allen Probes era to date. The Lyon-Fedder-Mobarry global MHD model has been run for this event using ARTEMIS data as solar wind input. The ULF wave power spectral density of the azimuthal electric field and compressional magnetic field is analyzed in the 0.5\textendash8.3 mHz range. The lowest three azimuthal modes account for 70\% of the total power during quiet times. However, during high activity, they are not exclusively dominant. The calcul ...

Li, Zhao; Hudson, Mary; Paral, Jan; Wiltberger, Michael; Turner, Drew;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022508

March 2015; radial diffusion; radial diffusion coefficient; Radiation belt; ULF waves; Van Allen Probes

Inner zone and slot electron radial diffusion revisited

Using recent data from NASA\textquoterights Van Allen Probes, we estimate the quiet time radial diffusion coefficients for electrons in the inner radiation belt (L < 3) with energies from ~50 to 750 keV. The observations are consistent with dynamics dominated by pitch angle scattering and radial diffusion. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate phase space density over pitch angle to obtain a \textquotedblleftbundle content\textquotedblright that is invariant to pitc ...

O\textquoterightBrien, T.; Claudepierre, S.; Guild, T.; Fennell, J.; Turner, D.; Blake, J.; Clemmons, J.; Roeder, J.;

Published by: Geophysical Research Letters      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016GL069749

Inner zone; radial diffusion; Radiation belt; Van Allen Probes

Statistical Properties of the Radiation Belt Seed Population

We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular we investigate the relationship between the 10s-100s keV seed electrons and >1 MeV core radiation belt electron population. Using a cross correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈ 0.73 with a time lag of 10-15 hours. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of ...

Boyd, A.J.; Spence, H.E.; Huang, C.-L.; Reeves, G.; Baker, D.; Turner, D.L.; Claudepierre, S.; Fennell, J.; Blake, J.; Shprits, Y.Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022652

Phase space density; Radiation belt; seed population; Van Allen Probes

Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave\textendashparticle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion ...

Mann, I.; Ozeke, L.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Reeves, G.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.;

Published by: Nature Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1038/nphys3799

Astrophysical plasmas; Magnetospheric physics; Van Allen Probes

A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnet ...

Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1210.1002/2016GL069643

Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes

Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to t ...

Ripoll, J.; Reeves, G.; Cunningham, G.; Loridan, V.; Denton, M.; ik, O.; Kurth, W.; Kletzing, C.; Turner, D.; Henderson, M.; . Y. Ukhorskiy, A;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068869

electron lifetimes; electron losses; hiss waves; Radiation belts; Slot region; Van Allen Probes; wave particle interactions

Dipolarizing flux bundles in the cis-geosynchronous magnetosphere: relationship between electric fields and energetic particle injections

Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background. Although DFBs are known to accelerate particles, creating energetic particle injections outside geosynchronous orbit (trans-GEO), the nature of the acceleration mechanism and the importance of DFBs in generating injections inside geosynchronous orbit (cis-GEO) are unclear. Our statistical study of cis-GEO DFBs using data from the Van Allen Probes r ...

Liu, Jiang; Angelopoulos, V.; Zhang, Xiao-Jia; Turner, D.; Gabrielse, C.; Runov, A.; Li, Jinxing; Funsten, H.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015JA021691

dipolarization front; dipolarizing flux bundle; energetic particle injection; geosynchronous orbit; magnetic storm; Particle acceleration

2015

Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.

We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner ...

Reeves, Geoffrey; Friedel, Reiner; Larsen, Brian; Skoug, Ruth; Funsten, Herbert; Claudepierre, Seth; Fennell, Joseph; Turner, Drew; Denton, Mick; Spence, H.; Blake, Bernard; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021569

Acceleration; energetic particles; Inner zone; Outer Zone; Radiation belts; Slot region; Van Allen Probes

Combined effects of concurrent Pc5 and chorus waves on relativistic electron dynamics

We present electron phase space density (PSD) calculations as well as concurrent Pc5 and chorus wave activity observations during two intense geomagnetic storms caused by interplanetary coronal mass ejections (ICMEs) resulting in contradicting net effect. We show that, during the 17 March 2013 storm, the coincident observation of chorus and relativistic electron enhancements suggests that the prolonged chorus wave activity seems to be responsible for the enhancement of the electron population in the outer radiation belt even ...

Katsavrias, C.; Daglis, I.; Li, W.; Dimitrakoudis, S.; Georgiou, M.; Turner, D.; Papadimitriou, C.;

Published by: Annales Geophysicae      Published on: 09/2015

YEAR: 2015     DOI: 10.5194/angeo-33-1173-2015

Magnetospheric physics

Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations

Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L\~5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over \~40s and a dispersionless injection of electrons up to \~3 MeV. P ...

Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John; Cattell, Cynthia; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel; Li, Xinlin; Malaspina, David; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew; Reeves, Geoffrey; Funsten, Herbert; Spence, Harlan; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL064955

electric fields; radiation belt electrons; substorm dipolarization; substorm injection; Van Allen Probes



  1      2