Found 2 entries in the Bibliography.

Showing entries from 1 through 2


Evolution of electron distribution driven by nonlinear resonances with intense field-aligned chorus waves

Resonant electron interaction with whistler-mode chorus waves is recognized as one of the main drivers of radiation belt dynamics. For moderate wave intensity, this interaction is well described by quasi-linear theory. However, recent statistics of parallel propagating chorus waves have demonstrated that 5 - 20\% of the observed waves are sufficiently intense to interact nonlinearly with electrons. Such interactions include phase trapping and phase bunching (nonlinear scattering) effects not described by quasi-linear diffusi ...

Vainchtein, D.; Zhang, X.-J.; Artemyev, A.; Mourenas, D.; Angelopoulos, V.; Thorne, R.;

YEAR: 2018     DOI: 10.1029/2018JA025654

Van Allen Probes


Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves

In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth\textquoterights radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffu ...

Artemyev, A.; Mourenas, D.; Agapitov, O.; Vainchtein, D.; Mozer, F.; Krasnoselskikh, V.;

YEAR: 2015     DOI: 10.1063/1.4927774

Cyclotron resonances; magnetic fields; Particle fluctuations; Plasma electromagnetic waves; Whistler waves