Bibliography



Found 73 entries in the Bibliography.


Showing entries from 1 through 50


2021

Trapping and amplification of unguided mode EMIC waves in the radiation belt

AbstractElectromagnetic ion cyclotron (EMIC) waves can cause the scattering loss of the relativistic electrons in the radiation belt. They can be classified into the guided mode and the unguided mode, according to waves propagation behavior. The guided mode waves have been widely investigated in the radiation belt, but the observation of the unguided mode waves have not been expected. Based on the observations of Van Allen Probes, we demonstrate for the first time the existence of the intense unguided L-mode EMIC waves in th ...

Wang, Geng; Gao, Zhonglei; Wu, MingYu; Wang, GuoQiang; Xiao, SuDong; Chen, YuanQiang; Zou, Zhengyang; Zhang, TieLong;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029322

EMIC waves; unguided mode; Radiation belt; ion abundance ratios; Wave trapping; growth rate; Van Allen Probes

ULF-modulation of whistler-mode waves in the inner magnetosphere during solar wind compression

Abstract The solar wind plays important roles on terrestrial magnetosphere dynamics, including the particle population and plasma waves generation. Here we report an interesting event that ULF waves are enhanced right after solar wind compression and the compressional mode ULF wave subsequently modulates both the intensity and energy flux direction of whistler-mode waves. Quasi-periodic whistler-mode wave packets are observed around L=5.6 at noon sector by Van Allen Probes. Growth rate calculation demonstrates that the compr ...

Shang, Xiongjun; Liu, Si; Chen, Lunjin; Gao, Zhonglei; Wang, Geng; He, Qian; Li, Tong; Xiao, Fuliang;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029353

Van Allen Probes

Direct evidence reveals transmitter signal propagation in the magnetosphere

AbstractSignals from very-low-frequency transmitters on the ground are known to induce energetic electron precipitation from the Earth’s radiation belts. The effectiveness of this mechanism depends on the propagation characteristics of those signals in the magnetosphere, and in particular whether the signals are ducted or nonducted along channels of enhanced plasma density, analogous to optical fibres. Here we perform a statistical analysis of in-situ waveform data collected by the Van Allen Probes satellites that shows th ...

Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; Horne, Richard;

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093987

VLF transmitters; ducted propagation; nonducted propagation; Magnetosphere; Van Allen Probes

Frequency-Dependent Modulation of Whistler-mode Waves By Density Irregularities During the Recovery Phase of a Geomagnetic Storm

Abstract Density irregularities near the plasmapause are commonly observed and play an important role in whistler-mode wave excitation and propagation. In this study, we report a frequency-dependent modulation event of whistler-mode waves by background density irregularities during a geomagnetic storm. Higher-frequency whistler waves (near 0.5 fce, where fce is the equatorial electron cyclotron frequency) are trapped in the density trough regions due to the small refractive index near the parallel direction, while lower-freq ...

Liu, Xu; Gu, Wenyao; Xia, Zhiyang; Chen, Lunjin; Horne, Richard;

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093095

Van Allen Probes

Observation of unusual chorus elements by Van Allen Probes

AbstractWhistler mode chorus waves play an important role in the radiation belt dynamics, which usually appear as discrete elements with frequency sweeping. Finer structure analysis shows that a chorus element is composed of several frequency-sweeping subelements, and such two-level structures can be successfully reproduced by modeling based on nonlinear theories. Previous observations and models suggest that an element and its subelements should have the same frequency-sweep direction. However, we here present two unexpecte ...

Liu, Si; Gao, Zhonglei; Xiao, Fuliang; He, Qian; Li, Tong; Shang, Xiongjun; Zhou, Qinghua; Yang, Chang; Zhang, Sai;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029258

Van Allen Probes

Modeling the Dynamics of Radiation Belt Electrons with Source and Loss Driven by the Solar Wind

Abstract A radial diffusion model directly driven by the solar wind is developed to reproduce MeV electron variations between L=2-12 (L is L* in this study) from October 2012 to April 2015. The radial diffusion coefficient, internal source rate, quick loss due to EMIC waves, and slow loss due to hiss waves are all expressed in terms of the solar wind speed, dynamic pressure, and interplanetary magnetic field (IMF). The model achieves a prediction efficiency (PE) of 0.45 at L=5 and 0.51 at L=4 after converting the electron ph ...

Xiang, Zheng; Li, Xinlin; Kapali, Sudha; Gannon, Jennifer; Ni, Binbin; Zhao, Hong; Zhang, Kun; Khoo, Leng;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028988

Radiation belt; Solar wind; flux prediction; radial diffusion; magnetopause shadowing; wave-particle interactions; Van Allen Probes

A Concise Empirical Formula for the Field-aligned Distribution of Auroral Kilometeric Radiation based on Arase satellite and Van Allen Probes

Abstract Auroral kilometric radiations (AKR) are strong radio emission phenomena, and can prduce significant acceleration or scattering of radiation belt electrons. The variation of AKR wave amplitude with the latitude (λ) has not been reported so far owing to lack of measurements. Here, using observations of the Arase satellite and Van Allen Probes from 23 March 2017 to 31 July 2019, we present the first statistical study on the AKR electric field amplitude (Et) in the radiation belts for |λ| = 0° − 40° and L-shell L ...

Zhang, Sai; Liu, Si; Li, Wentao; He, Yihua; Yang, Qiwu; Xiao, Fuliang; Kumamoto, Atsushi; Miyoshi, Yoshizumi; Nakamura, Yosuke; Tsuchiya, Fuminori; Kasahara, Yoshiya; Shinohara, Iku;

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL092805

AKR; wave amplitude; geomagnetic latitude; Radiation belt; field-aligned; Van Allen Probes

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E ...

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E ...

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E ...

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E ...

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

Empirical loss timescales of slot region electrons due to plasmaspheric hiss based on Van Allen Probes observations

Abstract Based on Van Allen Probes observations, in this study we perform a statistical analysis of the spectral intensities of plasmaspheric hiss at L-shells of 1.8 – 3.0 in the slot region. Our results show that slot region hiss power intensifies with a strong day-night asymmetry as the level of substorm activity or L-shell increases. Using the statistical spectral profiles of plasmaspheric hiss, we calculate the drift- and bounce-averaged electron pitch angle diffusion coefficients and subsequently obtain the resultant ...

Zhu, Qi; Cao, Xing; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Fu, Song; Summers, Danny; Hua, Man; Lou, Yuequn; Ma, Xin; Guo, YingJie; Guo, DeYu; Zhang, Wenxun;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029057

Plasmaspheric Hiss; Slot region; Electron loss timescales; Van Allen Probes

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To ...

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Global distribution of reversed energy spectra of ring current protons based on Van Allen Probes observations

Abstract Energy spectra of ring current protons are crucial to understanding the ring current dynamics. Based on high-quality Van Allen Probes RBSPICE measurements, we investigate the global distribution of the reversed proton energy spectra using the 2013-2019 RBSPICE datasets. The reversed proton energy spectra are characterized by the distinct flux minima around 50 - 100 keV and flux maxima around 200 - 400 keV. Our results show that the reversed proton energy spectrum is prevalent inside the plasmasphere, with the occurr ...

Juan, Yi; Song, Fu; Binbin, Ni; Xudong, Gu; Hua, Man; Xiang, Zheng; Cao, Xing; Shi, Run; Zhao, Yiwen;

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091559

Van Allen Probes

2020

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ...

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Statistical Study of Chorus Modulations by Background Magnetic Field and Plasma Density

In this study, we use observations of THEMIS and Van Allen Probes to statistically study the modulations of chorus emissions by variations of background magnetic field and plasma density in the ultra low frequency range. The modulation events are identified automatically and divided into three types according to whether the chorus intensity correlates to the variations of the magnetic field only (Type B), plasma density only (Type N), or both (Type NB). For the THEMIS observations, the occurrences of the Types B and N are la ...

Xia, Zhiyang; Chen, Lunjin; Li, Wen;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089344

Van Allen Probes

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ...

Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020060

radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes

Alpha Transmitter Signal Reflection and Triggered Emissions

Russian Alpha radio navigation system (RSDN-20) emits F1 = 11.9 kHz signals into the magnetosphere which propagate as whistler mode waves. Observed by waveform continuous burst mode from Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on Van Allen Probes, a case is presented and featured with ducted propagation, multiple reflections, and triggered emissions. Both risers and fallers appear in the triggered emissions. We use a ray tracing method to demonstrate ducted propagation, which has a s ...

Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; An, Xin; Horne, Richard;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090165

VLF transmitter; ducted propagation; triggered emission; Van Allen Probes

Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere

The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagati ...

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090027

ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes

Statistical Study on Locally Generated High-Frequency Plasmaspheric Hiss and Its Effect on Suprathermal Electrons: Van Allen Probes Observation and Quasi-linear Simulation

The local generation of high-frequency plasmaspheric hiss has recently been reported by a case study (He et al., 2019, https://doi.org/10.1029/2018GL081578). In this research, we perform statistics of global distributions of the locally generated high-frequency plasmaspheric hiss (LHFPH) for different levels of substorm activity, using 6-year observational data from Van Allen Probes. The statistics find that the LHFPH amplitude presents a strong magnetic local time (MLT) asymmetry and highly depends on substorm activity, and ...

He, Zhaoguo; Yu, Jiang; Chen, Lunjin; Xia, Zhiyang; Wang, Wenrui; Li, Kun; Cui, Jun;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028526

Van Allen Probes

New Insights From Long-Term Measurements of Inner Belt Protons (10s of MeV) by SAMPEX, POES, Van Allen Probes, and Simulation Results

The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) mission provided long-term measurements of 10s of megaelectron volt (MeV) inner belt (L < 2) protons (1992–2009) as did the Polar-orbiting Operational Environmental Satellite-18 (POES-18, 2005 to present). These long-term measurements at low-Earth orbit (LEO) showed clear solar cycle variations which anticorrelate with sunspot number. However, the magnitude of the variation is much greater than the solar cycle variation of galactic cosmic rays (>GeV) tha ...

Li, Xinlin; Xiang, Zheng; Zhang, Kun; Khoo, Lengying; Zhao, Hong; Baker, Daniel; Temerin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028198

Inner radiation belt; Inner Belt Proton; Solar cycle variation; Cosmic rays; neutron monitor; Low Earth Orbit satellite; Van Allen Probes

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dy ...

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

Electron-Driven Magnetic Dip Embedded Within the Proton-Driven Magnetic Dip and the Related Echoes of Butterfly Distribution of Relativistic Electrons

In this study, a magnetic dip event in which a small-scale magnetic dip is embedded within a large-scale magnetic dip is analyzed based on the observations of the Van Allen Probes. The small-scale dip is contributed by a sharp electron injection at the energy range of 1 to 10 keV, but the large-scale dip is contributed by a smooth proton injection at the energy range higher than 10 keV. The formation of dip caused by the suprathermal electrons is supported by the self-consistent magnetic model. Moreover, the echoes of bu ...

Zhu, Hui; Chen, Lunjin; Xia, Zhiyang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088983

magnetic dips; echoes of butterfly distributions; ring current-radiation belt coupling; Van Allen Probes

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensit ...

Wang, JingZhi; Zhu, Qi; Gu, Xudong; Fu, Song; Guo, JianGuang; Zhang, Xiaoxin; Yi, Juan; Guo, YingJie; Ni, Binbin; Xiang, Zheng;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020034

hiss; Van Allen Probes; global model

The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies

Abstract Observationally, electron cyclotron harmonic (ECH) waves are often terminated at the outer boundary of the plasmasphere boundary layer (PBL, i.e., plasmapause). Physics of this empirical relation is not well established. In this study, two categories of ECH waves are shown by their different behaviors near PBL. For Category I, all bands of ECH waves terminate at PBL because the density ratio (nh/nc) between hot and cold electrons decreases dramatically across PBL. For Category II, ECH waves, especially the lower har ...

Liu, Xu; Chen, Lunjin; Xia, Zhiyang;

YEAR: 2020     DOI: 10.1029/2020GL087365

two types of ECH wave; Plasmapause; instability; excitation and attenuation mechanism; statistical characteristics of two types of ECH wave; Van Allen Probes

The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies

Observationally, electron cyclotron harmonic (ECH) waves are often terminated at the outer boundary of the plasmasphere boundary layer (PBL, i.e., plasmapause). Physics of this empirical relation is not well established. In this study, two categories of ECH waves are shown by their different behaviors near PBL. For Category I, all bands of ECH waves terminate at PBL because the density ratio (nh/nc) between hot and cold electrons decreases dramatically across PBL. For Category II, ECH waves, especially the lower harmonic ban ...

Liu, Xu; Chen, Lunjin; Xia, Zhiyang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087365

two types of ECH wave; Plasmapause; instability; excitation and attenuation mechanism; statistical characteristics of two types of ECH wave; Van Allen Probes

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at diffe ...

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

2019

How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions

In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > -30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecuti ...

Khoo, L.-Y.; Li, X.; Zhao, H.; Chu, X.; Xiang, Z.; Zhang, K.;

YEAR: 2019     DOI: 10.1029/2019JA027412

energetic electron enhancements; Plasmapause; Radiation Belt Dynamics; Van Allen Probes

Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts

Auroral kilometric radiation (AKR) can potentially produce serious damage to space-borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3\textendash6.5 and 00\textendash24 magnetic local time (MLT), with a higher occurrence on the nightside (20\text ...

Zhao, Wanli; Liu, Si; Zhang, Sai; Zhou, Qinghua; Yang, Chang; He, Yihua; Gao, Zhonglei; Xiao, Fuliang;

YEAR: 2019     DOI: 10.1029/2019GL083944

Auroral kilometric radiation; global occurrence; Radiation belt; suprathermal electron flux enhancenments; Van Allen Probes

Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons

Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0\textendash6.0 and MLT = 18\textendash21, hiss emissions occur concurrently with a rate of >~80\%. Plume hiss can efficiently sca ...

Zhang, Wenxun; Ni, Binbin; Huang, He; Summers, Danny; Fu, Song; Xiang, Zheng; Gu, Xudong; Cao, Xing; Lou, Yuequn; Hua, Man;

YEAR: 2019     DOI: 10.1029/2018GL081863

Electron scattering; plasmaspheric plumes; plume hiss; Van Allen Probes

Global occurrences of electrostatic electron cyclotron harmonic waves associated with radiation belt electron distributions

Electrostatic electron cyclotron harmonic (ECH) waves can yield diffuse aurora primarily at higher L-shells by driving efficient precipitation loss of plasma sheet electrons. Here using the Van Allen Probes high resolution data, we examine in detail the global occurrences of ECH waves during the period from October 1, 2012 to June 30, 2017 and find that there are totally 419 events of enhanced ECH waves. The statistical results demonstrate that ECH waves can be present over a broad region of L=4-6 and 00-24 MLT, with a highe ...

Chen, Yaru; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Gao, Zhonglei; Xiao, Fuliang;

YEAR: 2019     DOI: 10.1029/2019GL082668

electron ring distribution; global occurrences; Radiation belt; Van Allen Probe observation; Van Allen Probes; waves

Observational evidence of the drift-mirror plasma instability in Earth\textquoterights inner magnetosphere

We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth\textquoterights inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA\textquoterights Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode pla ...

Soto-Chavez, A.; Lanzerotti, L.; Manweiler, J.; Gerrard, A.; Cohen, R.; Xia, Z.; Chen, L.; Kim, H.;

YEAR: 2019     DOI: 10.1063/1.5083629

Van Allen Probes

2018

Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere

Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ...

Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui;

YEAR: 2018     DOI: 10.1029/2018GL080635

aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes

On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods

Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when c ...

Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard;

YEAR: 2018     DOI: 10.1029/2018JA026074

energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes

Combined Scattering of Outer Radiation Belt Electrons by Simultaneously Occurring Chorus, Exohiss, and Magnetosonic Waves

We report a typical event that fast magnetosonic (MS) waves, exohiss, and two-band chorus waves occurred simultaneously on the dayside observed by Van Allen Probes on 25 December 2013. By combining calculations of electron diffusion coefficients and 2-D Fokker-Planck diffusion simulations, we quantitatively analyze the combined scattering effect of multiple waves to demonstrate that the net impact of combined scattering does not simply depend on the wave intensity dominance of various plasma waves. Although the observed MS w ...

Hua, Man; Ni, Binbin; Fu, Song; Gu, Xudong; Xiang, Zheng; Cao, Xing; Zhang, Wenxun; He, Ying; Huang, He; Lou, Yuequn; Zhang, Yang;

YEAR: 2018     DOI: 10.1029/2018GL079533

Combined scattering effect; diffusion simulations; Exohiss; magnetosonic waves; resonant wave-particle interactions; two-band chorus waves; Van Allen Probes

Generation of lower L -shell dayside chorus by energetic electrons from the plasmasheet

Currently, the generation mechanism for the lower L-shell dayside chorus has still remained an open question. Here, we report two storm events: 06-07 March 2016 and 20-21 January 2016, when Van Allen Probes observed enhanced dayside chorus with lower and higher wave normal angles (the angles between the wave vector and the geomagnetic field) in the region of L = 3.5-6.3 and MLT = 5.6-13.5. Hot and energetic (\~ 1-100 keV) electrons displayed enhancements in fluxes and anisotropy when they were injected from the plasmasheet a ...

He, Yihua; Xiao, Fuliang; Su, Zhenpeng; Zheng, Huinan; Yang, Chang; Liu, Si; Zhou, Qinghua;

YEAR: 2018     DOI: 10.1029/2017JA024889

Dayside chorus generation; Radiation belt; Van Allen Probes; Wave-particle interaction

A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes

A statistical analysis on the radiation belt dropouts is performed based on 4 years of electron phase space density data from the Van Allen Probes. The μ, K, and L* dependence of dropouts and their driving mechanisms and geomagnetic and solar wind conditions are investigated using electron phase space density data sets for the first time. Our results suggest that electronmagnetic ion cyclotron (EMIC) wave scattering is the dominant dropout mechanism at low L* region, which requires the most active geomagnetic and solar wind ...

Xiang, Zheng; Tu, Weichao; Ni, Binbin; Henderson, M.; Cao, Xing;

YEAR: 2018     DOI: 10.1029/2018GL078907

EMIC wave; magnetopause shadowing; Phase space density; radial diffusion; radiation belt dropout; Van Allen Probes; wave particle interaction

Observations of impulsive electric fields induced by Interplanetary Shock

We investigate the characteristics of impulsive electric fields in Earth\textquoterights magnetosphere, as measured by the Van Allen Probes, in association with interplanetary shocks, as measured by ACE and Wind spacecraft in the solar wind from January 2013 to July 2016. It is shown that electric field impulses are mainly induced by global compressions by the shocks, mostly in the azimuthal direction and the amplitudes of the initial electric field impulses are positively correlated with the rate of increase of dynamic pres ...

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Xiao, Chao; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018GL078809

electric field; inner magnetosphere; interplanetary shock; particle accelaration; Van Allen Probes

Observed propagation route of VLF transmitter signals in the magnetosphere

Signals of powerful ground transmitters at various places have been detected by satellites in near-Earth space. The study on propagation mode, ducted or nonducted, has attracted much attentions for several decades. Based on the statistical results from Van Allen Probes (data from Oct. 2012 to Mar. 2017) and DEMETER satellite (from Jan. 2006 to Dec. 2007), we present the ground transmitter signals distributed clearly in ionosphere and magnetosphere. The observed propagation route in the meridian plane in the magnetosphere for ...

Zhang, Zhenxia; Chen, Lunjin; Li, Xinqiao; Xia, Zhiyang; Heelis, Roderick; Horne, Richard;

YEAR: 2018     DOI: 10.1029/2018JA025637

ducted propagation; in magnetosphere; nonducted propagation; Van Allen Probes; VLF transmitter

Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L ~ 4\textendash6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak ...

Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man;

YEAR: 2018     DOI: 10.1029/2018GL077212

Electron scattering; nightside plumes; Plasmaspheric Hiss; Van Allen Probes

Quantifying Extremely Rapid Flux Enhancements of Radiation Belt Relativistic Electrons Associated With Radial Diffusion

Previous studies have revealed a typical picture that seed electrons are transported inward under the drive of radial diffusion and then accelerated via chorus to relativistic energies. Here we show a potentially different process during the 2\textendash3 October 2013 storm when Van Allen Probes observed extremely rapid (by about 50 times in 2 h) flux enhancements of relativistic (1.8\textendash3.4 MeV) electrons but without distinct chorus at lower L-shells. Meanwhile, Time History of Events and Macroscale Interactions duri ...

Liu, Si; Yan, Qi; Yang, Chang; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Xiao, Fuliang;

YEAR: 2018     DOI: 10.1002/grl.v45.310.1002/2017GL076513

chorus-driven acceleration; radial diffusion; Radiation belt; THEMIS; Van Allen Probes

Resonant Scattering of Radiation Belt Electrons by Off-Equatorial Magnetosonic Waves

Fast magnetosonic (MS) waves are commonly regarded as electromagnetic waves that are characteristically confined within \textpm3\textdegree of the geomagnetic equator. We report two typical off-equatorial MS events observed by Van Allen Probes, that is, the 8 May 2014 event that occurred at the geomagnetic latitudes of 7.5\textdegree\textendash9.2\textdegree both inside and outside the plasmasphere with the wave amplitude up to 590 pT and the 9 January 2014 event that occurred at the latitudes of\textemdash(15.7\textdegree\t ...

Ni, Binbin; Zou, Zhengyang; Fu, Song; Cao, Xing; Gu, Xudong; Xiang, Zheng;

YEAR: 2018     DOI: 10.1002/grl.v45.310.1002/2017GL075788

butterfly pitch angle distributions; off-equatorial MS waves; radiation belt electrons; Van Allen Probes

Storm-time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus

During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10-h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3-6 and MLT=2 - 10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 Me ...

Yang, Chang; Xiao, Fuliang; He, Yihua; Liu, Si; Zhou, Qinghua; Guo, Mingyue; Zhao, Wanli;

YEAR: 2018     DOI: 10.1002/2017GL075894

energetic electron; Geomagnetic storm; outer radiation belt; Van Allen Probes; Wave-particle interaction; whistler-mode chorus wave

One-Dimensional Full Wave Simulation of Equatorial Magnetosonic Wave Propagation in an Inhomogeneous Magnetosphere

The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth\textquoterights dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude i ...

Liu, Xu; Chen, Lunjin; Yang, Lixia; Xia, Zhiyang; Malaspina, David;

YEAR: 2018     DOI: 10.1002/2017JA024336

fine-scale density structure; finite difference time domain; magnetosonic wave; Plasmapause; Van Allen Probes

2017

Multiple-satellite observation of magnetic dip event during the substorm on 10 October, 2013

We present a multiple-satellite observation of the magnetic dip event during the substorm on October 10, 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the EMIC wave generation ...

He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G.; Xiong, Ying; Xie, Lun; Cao, Yong;

YEAR: 2017     DOI: 10.1002/2017GL074869

EMIC wave; magnetic dip; radiation belt electrons; Ring current ions; Van Allen Probes

Butterfly distribution of Earth\textquoterights radiation belt relativistic electrons induced by dayside chorus

Previous theoretical studies have shown that dayside chorus can produce butterfly distribution of energetic electrons in the Earth\textquoterights radiation belts by preferentially accelerating medium pitch angle electrons, but this requires the further confirmation from high-resolution satellite observation. Here, we report correlated Van Allen Probes data on wave and particle during the 11\textendash13 April, 2014 geomagnetic storm. We find that a butterfly pitch angle distribution of relativistic electrons is formed aroun ...

Jin, YuYue; Yang, Chang; He, Yihua; Liu, Si; Zhou, Qinghua; Xiao, Fuliang;

YEAR: 2017     DOI: 10.1007/s11431-017-9067-y

butterfly distribution relativistic electrons radiation belts wave-particle interaction dayside chorus; Van Allen Probes

Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes

To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause sta ...

Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S.; Baker, D.;

YEAR: 2017     DOI: 10.1002/2017JA024487

EMIC wave; last closed drift shell; magnetopause shadowing; Phase space density; radiation belt dropout; Van Allen Probes

Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7\textendash5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, bu ...

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.;

YEAR: 2017     DOI: 10.1002/2017GL073051

ECH waves; RBSP results; Van Allen Probes; Wave-particle interaction

Relativistic electron\textquoterights butterfly pitch angle distribution modulated by localized background magnetic field perturbation driven by hot ring current ions

Dayside modulated relativistic electron\textquoterights butterfly pitch angle distributions (PADs) from \~200 keV to 2.6 MeV were observed by Van Allen Probe B at L = 5.3 on 15 November 2013. They were associated with localized magnetic dip driven by hot ring current ion (60\textendash100 keV proton and 60\textendash200 keV helium and oxygen) injections. We reproduce the electron\textquoterights butterfly PADs at satellite\textquoterights location using test particle simulation. The simulation results illustrate that a negat ...

Xiong, Ying; Chen, Lunjin; Xie, Lun; Fu, Suiyan; Xia, Zhiyang; Pu, Zuyin;

YEAR: 2017     DOI: 10.1002/2017GL072558

butterfly distribution; Radiation belt; ring current; Van Allen Probes

Variations of the relativistic electron flux after a magnetospheric compression event

On January 21, 2015, a sharp increase of the solar wind dynamic pressure impacted the magnetosphere. The magnetopause moved inward to the region L< 8 without causing a geomagnetic storm. The flux of the relativistic electrons in the outer radiation belt decreased by half during this event based on the observations of the particle radiation monitor (PRM) of the fourth of the China-Brazil Earth Resource Satellites (CBERS-4). The flux remained low for approximately 11 d; it did not recover after a small magnetic storm on Januar ...

Chen, Zhe; Chen, HongFei; Li, YiFan; Xiang, HongWen; Yu, XiangQian; Shi, WeiHong; Hao, ZhiHua; Zou, Hong; Zou, JiQing; Zhong, WeiYing;

YEAR: 2017     DOI: 10.1007/s11431-016-9008-3

outer radiation belt high-energy electrons medium-energy electrons space environment; Van Allen Probes



  1      2