Bibliography





Van Allen Probes Bibliography is from August 2012 through September 2021

Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 23 entries in the Bibliography.


Showing entries from 1 through 23


2021

Modeling the Dynamics of Radiation Belt Electrons with Source and Loss Driven by the Solar Wind

Abstract A radial diffusion model directly driven by the solar wind is developed to reproduce MeV electron variations between L=2-12 (L is L* in this study) from October 2012 to April 2015. The radial diffusion coefficient, internal source rate, quick loss due to EMIC waves, and slow loss due to hiss waves are all expressed in terms of the solar wind speed, dynamic pressure, and interplanetary magnetic field (IMF). The model achieves a prediction efficiency (PE) of 0.45 at L=5 and 0.51 at L=4 after converting the electron ph ...

Xiang, Zheng; Li, Xinlin; Kapali, Sudha; Gannon, Jennifer; Ni, Binbin; Zhao, Hong; Zhang, Kun; Khoo, Leng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028988

Radiation belt; Solar wind; flux prediction; radial diffusion; magnetopause shadowing; wave-particle interactions; Van Allen Probes

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E ...

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

Published by: Earth and Planetary Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E ...

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

Published by: Earth and Planetary Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

Empirical loss timescales of slot region electrons due to plasmaspheric hiss based on Van Allen Probes observations

Abstract Based on Van Allen Probes observations, in this study we perform a statistical analysis of the spectral intensities of plasmaspheric hiss at L-shells of 1.8 – 3.0 in the slot region. Our results show that slot region hiss power intensifies with a strong day-night asymmetry as the level of substorm activity or L-shell increases. Using the statistical spectral profiles of plasmaspheric hiss, we calculate the drift- and bounce-averaged electron pitch angle diffusion coefficients and subsequently obtain the resultant ...

Zhu, Qi; Cao, Xing; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Fu, Song; Summers, Danny; Hua, Man; Lou, Yuequn; Ma, Xin; Guo, YingJie; Guo, DeYu; Zhang, Wenxun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029057

Plasmaspheric Hiss; Slot region; Electron loss timescales; Van Allen Probes

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To ...

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

Published by: Space Weather      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Global distribution of reversed energy spectra of ring current protons based on Van Allen Probes observations

Abstract Energy spectra of ring current protons are crucial to understanding the ring current dynamics. Based on high-quality Van Allen Probes RBSPICE measurements, we investigate the global distribution of the reversed proton energy spectra using the 2013-2019 RBSPICE datasets. The reversed proton energy spectra are characterized by the distinct flux minima around 50 - 100 keV and flux maxima around 200 - 400 keV. Our results show that the reversed proton energy spectrum is prevalent inside the plasmasphere, with the occurr ...

Juan, Yi; Song, Fu; Binbin, Ni; Xudong, Gu; Hua, Man; Xiang, Zheng; Cao, Xing; Shi, Run; Zhao, Yiwen;

Published by: Geophysical Research Letters      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091559

Van Allen Probes

2020

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ...

Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi;

Published by: Earth and Planetary Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020060

radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes

New Insights From Long-Term Measurements of Inner Belt Protons (10s of MeV) by SAMPEX, POES, Van Allen Probes, and Simulation Results

The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) mission provided long-term measurements of 10s of megaelectron volt (MeV) inner belt (L < 2) protons (1992–2009) as did the Polar-orbiting Operational Environmental Satellite-18 (POES-18, 2005 to present). These long-term measurements at low-Earth orbit (LEO) showed clear solar cycle variations which anticorrelate with sunspot number. However, the magnitude of the variation is much greater than the solar cycle variation of galactic cosmic rays (>GeV) tha ...

Li, Xinlin; Xiang, Zheng; Zhang, Kun; Khoo, Lengying; Zhao, Hong; Baker, Daniel; Temerin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028198

Inner radiation belt; Inner Belt Proton; Solar cycle variation; Cosmic rays; neutron monitor; Low Earth Orbit satellite; Van Allen Probes

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dy ...

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensit ...

Wang, JingZhi; Zhu, Qi; Gu, Xudong; Fu, Song; Guo, JianGuang; Zhang, Xiaoxin; Yi, Juan; Guo, YingJie; Ni, Binbin; Xiang, Zheng;

Published by: Earth and Planetary Physics      Published on: 06/2020

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020034

hiss; Van Allen Probes; global model

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at diffe ...

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

2019

How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions

In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > -30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecuti ...

Khoo, L.-Y.; Li, X.; Zhao, H.; Chu, X.; Xiang, Z.; Zhang, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027412

energetic electron enhancements; Plasmapause; Radiation Belt Dynamics; Van Allen Probes

Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons

Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0\textendash6.0 and MLT = 18\textendash21, hiss emissions occur concurrently with a rate of >~80\%. Plume hiss can efficiently sca ...

Zhang, Wenxun; Ni, Binbin; Huang, He; Summers, Danny; Fu, Song; Xiang, Zheng; Gu, Xudong; Cao, Xing; Lou, Yuequn; Hua, Man;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018GL081863

Electron scattering; plasmaspheric plumes; plume hiss; Van Allen Probes

2018

On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods

Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when c ...

Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026074

energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes

Combined Scattering of Outer Radiation Belt Electrons by Simultaneously Occurring Chorus, Exohiss, and Magnetosonic Waves

We report a typical event that fast magnetosonic (MS) waves, exohiss, and two-band chorus waves occurred simultaneously on the dayside observed by Van Allen Probes on 25 December 2013. By combining calculations of electron diffusion coefficients and 2-D Fokker-Planck diffusion simulations, we quantitatively analyze the combined scattering effect of multiple waves to demonstrate that the net impact of combined scattering does not simply depend on the wave intensity dominance of various plasma waves. Although the observed MS w ...

Hua, Man; Ni, Binbin; Fu, Song; Gu, Xudong; Xiang, Zheng; Cao, Xing; Zhang, Wenxun; He, Ying; Huang, He; Lou, Yuequn; Zhang, Yang;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079533

Combined scattering effect; diffusion simulations; Exohiss; magnetosonic waves; resonant wave-particle interactions; two-band chorus waves; Van Allen Probes

A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes

A statistical analysis on the radiation belt dropouts is performed based on 4 years of electron phase space density data from the Van Allen Probes. The μ, K, and L* dependence of dropouts and their driving mechanisms and geomagnetic and solar wind conditions are investigated using electron phase space density data sets for the first time. Our results suggest that electronmagnetic ion cyclotron (EMIC) wave scattering is the dominant dropout mechanism at low L* region, which requires the most active geomagnetic and solar wind ...

Xiang, Zheng; Tu, Weichao; Ni, Binbin; Henderson, M.; Cao, Xing;

Published by: Geophysical Research Letters      Published on: 08/2018

YEAR: 2018     DOI: 10.1029/2018GL078907

EMIC wave; magnetopause shadowing; Phase space density; radial diffusion; radiation belt dropout; Van Allen Probes; wave particle interaction

Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L ~ 4\textendash6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak ...

Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man;

Published by: Geophysical Research Letters      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018GL077212

Electron scattering; nightside plumes; Plasmaspheric Hiss; Van Allen Probes

Resonant Scattering of Radiation Belt Electrons by Off-Equatorial Magnetosonic Waves

Fast magnetosonic (MS) waves are commonly regarded as electromagnetic waves that are characteristically confined within \textpm3\textdegree of the geomagnetic equator. We report two typical off-equatorial MS events observed by Van Allen Probes, that is, the 8 May 2014 event that occurred at the geomagnetic latitudes of 7.5\textdegree\textendash9.2\textdegree both inside and outside the plasmasphere with the wave amplitude up to 590 pT and the 9 January 2014 event that occurred at the latitudes of\textemdash(15.7\textdegree\t ...

Ni, Binbin; Zou, Zhengyang; Fu, Song; Cao, Xing; Gu, Xudong; Xiang, Zheng;

Published by: Geophysical Research Letters      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/grl.v45.310.1002/2017GL075788

butterfly pitch angle distributions; off-equatorial MS waves; radiation belt electrons; Van Allen Probes

2017

Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes

To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause sta ...

Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024487

EMIC wave; last closed drift shell; magnetopause shadowing; Phase space density; radiation belt dropout; Van Allen Probes

Variations of the relativistic electron flux after a magnetospheric compression event

On January 21, 2015, a sharp increase of the solar wind dynamic pressure impacted the magnetosphere. The magnetopause moved inward to the region L< 8 without causing a geomagnetic storm. The flux of the relativistic electrons in the outer radiation belt decreased by half during this event based on the observations of the particle radiation monitor (PRM) of the fourth of the China-Brazil Earth Resource Satellites (CBERS-4). The flux remained low for approximately 11 d; it did not recover after a small magnetic storm on Januar ...

Chen, Zhe; Chen, HongFei; Li, YiFan; Xiang, HongWen; Yu, XiangQian; Shi, WeiHong; Hao, ZhiHua; Zou, Hong; Zou, JiQing; Zhong, WeiYing;

Published by: Science China Technological Sciences      Published on: 04/2017

YEAR: 2017     DOI: 10.1007/s11431-016-9008-3

outer radiation belt high-energy electrons medium-energy electrons space environment; Van Allen Probes

Inferring electromagnetic ion cyclotron wave intensity from low altitude POES proton flux measurements: A detailed case study with conjugate Van Allen Probes observations

Zhang, Yang; Shi, Run; Ni, Binbin; Gu, Xudong; Zhang, Xianguo; Zuo, Pingbing; Fu, Song; Xiang, Zheng; Wang, Qi; Cao, Xing; Zou, Zhengyang;

Published by: Advances in Space Research      Published on: 03/2017

YEAR: 2017     DOI: 10.1016/j.asr.2016.12.035

Van Allen Probes

2016

Combined Scattering Loss of Radiation Belt Relativistic Electrons by Simultaneous Three-band EMIC Waves: A Case Study

Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect ...

He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022483

combined scattering rates; electromagnetic ion cyclotron waves; loss timescales; radiation belt relativistic electrons; resonant wave-particle interactions; Van Allen Probes

2015

Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radi ...

Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062964

Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes



  1