Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2019 |
Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence condit ... Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2018JA026168 Magnetic Storms; Oxygen ions; ring current; Van Allen Probes |
2016 |
Propagation of ULF waves from the upstream region to the midnight sector of the inner magnetosphere Ultralow frequency (ULF) waves generated in the ion foreshock are a well-known source of Pc3-Pc4 waves (7\textendash100 mHz) observed in the dayside magnetosphere. We use data acquired on 10 April 2013 by multiple spacecraft to demonstrate that ULF waves of upstream origin can propagate to the midnight sector of the inner magnetosphere. At 1130\textendash1730 UT on the selected day, the two Van Allen Probes spacecraft and the geostationary ETS-VIII satellite detected compressional 20 to 40 mHz magnetic field oscillations bet ... Takahashi, Kazue; Hartinger, Michael; Malaspina, David; Smith, Charles; Koga, Kiyokazu; Singer, Howard; ühauff, Dennis; Baishev, Dmitry; Moiseev, Alexey; Yoshikawa, Akimasa; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA022958 midnight sector; Pc3 waves; plasmasphere; upstream waves; Van Allen Probes |
2015 |
We perform test particle simulations of energetic electrons interacting with whistler mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and equatorial pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function and obtain a distribution function in energy and equatorial pitch ... Omura, Yoshiharu; Miyashita, Yu; Yoshikawa, Masato; Summers, Danny; Hikishima, Mitsuru; Ebihara, Yusuke; Kubota, Yuko; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2015 YEAR: 2015   DOI: 10.1002/2015JA021563 Chorus; nonlinear wave-particle interaction; Particle acceleration; Radiation belts; relativistic electrons; simulation |
1