Bibliography



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2020

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

Abstract The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not dire ...

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

YEAR: 2020     DOI: 10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

2018

Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes\textquoteright measurements

We perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes\textquoteright (1.1\textendash5.8 Re) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van ...

Saikin, A.A.; Jordanova, V.K.; Zhang, J.C.; Smith, C.W.; Spence, H.E.; Larsen, B.A.; Reeves, G.D.; Torbert, R.B.; Kletzing, C.A.; Zhelavskaya, I.S.; Shprits, Y.Y.;

YEAR: 2018     DOI: 10.1016/j.jastp.2018.01.024

EMIC waves Van Allen Probes Linear theory Wave generation; Van Allen Probes

2017

Empirical modeling of the plasmasphere dynamics using neural networks

We propose a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distributi ...

Zhelavskaya, Irina; Shprits, Yuri; c, Maria;

YEAR: 2017     DOI: 10.1002/2017JA024406

inner magnetosphere; Machine learning; Models; neural networks; plasmasphere; Van Allen Probes

Signatures of Ultrarelativistic Electron Loss in the Heart of the Outer Radiation Belt Measured by Van Allen Probes

Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights outer radiation belt have been limited to direct or indirect measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived from ...

Aseev, N.; . Y. Shprits, Y; . Y. Drozdov, A; Kellerman, A.; Usanova, M.; Wang, D.; Zhelavskaya, I.;

YEAR: 2017     DOI: 10.1002/2017JA024485

electron loss; EMIC waves; Radiation belts; ultrarelativistic electrons; Van Allen Probes; wave-particle interactions

2016

Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA\textquoterights Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few a ...

Zhelavskaya, I.; Spasojevic, M.; . Y. Shprits, Y; Kurth, W.;

YEAR: 2016     DOI: 10.1002/2015JA022132

electron number density; neural networks; Van Allen Probes



  1