Bibliography



Found 31 entries in the Bibliography.


Showing entries from 1 through 31


2020

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Direct evidence of the pitch angle scattering of relativistic electrons induced by EMIC waves

In this study, we analyze an EMIC wave event of rising tone elements recorded by the Van Allen Probes. The pitch angle distributions of relativistic electrons exhibit a direct response to the two elements of EMIC waves: at the intermediate pitch angle the fluxes are lower and at the low pitch angle the fluxes are higher than those when no EMIC was observed. In particular, the observed changes in the pitch angle distributions are most likely to be caused by nonlinear wave particle interaction. The calculation of the minimum r ...

Zhu, Hui; Chen, Lunjin; Claudepierre, Seth; Zheng, Liheng;

YEAR: 2020     DOI: 10.1029/2019GL085637

EMIC waves; nonlinear wave-particle interaction; pitch angle scattering; Van Allen Probes

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

2019

Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections

Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler-mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high- and low-density conditions. The enhanced proton thermal pressure distorted the ...

Dai, Guyue; Su, Zhenpeng; Liu, Nigang; Wang, Bin; Zheng, Huinan; Wang, Yuming; Wang, Shui;

YEAR: 2019     DOI: 10.1029/2019GL082944

Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; substorm injection; Van Allen Probes; Wave-particle interaction

Initial Results From the GEM Challenge on the Spacecraft Surface Charging Environment

Spacecraft surface charging during geomagnetically disturbed times is one of the most important causes of satellite anomalies. Predicting the surface charging environment is one prevalent task of the geospace environment models. Therefore, the Geospace Environment Modeling (GEM) Focus Group \textquotedblleftInner Magnetosphere Cross-energy/Population Interactions\textquotedblright initiated a community-wide challenge study to assess the capability of several inner magnetosphere ring current models in determining surface char ...

Yu, Yiqun; ätter, Lutz; Jordanova, Vania; Zheng, Yihua; Engel, Miles; Fok, Mei-Ching; Kuznetsova, Maria;

YEAR: 2019     DOI: 10.1029/2018SW002031

GEM challenge; IMCEPI Focus Group; ring current model assessment; Space weather; spacecraft surface charging; Van Allen Probes

2018

Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere

Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ...

Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui;

YEAR: 2018     DOI: 10.1029/2018GL080635

aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes

Generation of lower L -shell dayside chorus by energetic electrons from the plasmasheet

Currently, the generation mechanism for the lower L-shell dayside chorus has still remained an open question. Here, we report two storm events: 06-07 March 2016 and 20-21 January 2016, when Van Allen Probes observed enhanced dayside chorus with lower and higher wave normal angles (the angles between the wave vector and the geomagnetic field) in the region of L = 3.5-6.3 and MLT = 5.6-13.5. Hot and energetic (\~ 1-100 keV) electrons displayed enhancements in fluxes and anisotropy when they were injected from the plasmasheet a ...

He, Yihua; Xiao, Fuliang; Su, Zhenpeng; Zheng, Huinan; Yang, Chang; Liu, Si; Zhou, Qinghua;

YEAR: 2018     DOI: 10.1029/2017JA024889

Dayside chorus generation; Radiation belt; Van Allen Probes; Wave-particle interaction

Magnetosonic harmonic falling and rising frequency emissions potentially generated by nonlinear wave-wave interactions in the Van Allen radiation belts

Magnetosonic waves play a potentially important role in the complex evolution of the radiation belt electrons. These waves typically appear as discrete emission lines along the proton gyrofrequency harmonics, consistent with the prediction of the local Bernstein mode instability of hot proton ring distributions. Magnetosonic waves are nearly dispersionless particularly at low harmonics and therefore have the roughly unchanged frequency-time structures during the propagation. On the basis of Van Allen Probes observations, we ...

Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui;

YEAR: 2018     DOI: 10.1029/2018GL079232

Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; rising/falling frequency; Van Allen Probes; wave propagation

Large-Amplitude Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes

Su, Zhenpeng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui;

YEAR: 2018     DOI: 10.1002/2017GL076754

electron instability; ELF hiss; generation mechanism; pitch angle scattering; precipitation loss; Radiation belt; Van Allen Probes

Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magn ...

Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui;

YEAR: 2018     DOI: 10.1002/2017GL076382

magnetosonic waves; Radiation belt; ring current; solar wind dynamic pressure; Van Allen Probes; Wave-particle interaction

2017

Shock-induced disappearance and subsequent recovery of plasmaspheric hiss: Coordinated observations of RBSP, THEMIS and POES satellites

Plasmaspheric hiss is an extremely low frequency whistler-mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here, on the basis of the analysis of an event of shock-induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS and POES missions, we attempt to identify its d ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Reeves, G.; Zheng, Huinan; Wang, Yuming; Wang, Shui;

YEAR: 2017     DOI: 10.1002/2017JA024470

Chorus; interplanetary shock; Plasmaspheric Hiss; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Rapid loss of radiation belt relativistic electrons by EMIC waves

How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth\textquoterights outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile ...

Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2017JA024169

electron loss; EMIC waves; pitch angle scattering; radial diffusion; Radiation belts; Van Allen Probes; Wave-particle interaction

Direct observation of generation and propagation of magnetosonic waves following substorm injection

Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magneto ...

Su, Zhenpeng; Wang, Geng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui;

YEAR: 2017     DOI: 10.1002/2017GL074362

Bernstein mode instability; magnetosonic waves; Radiation belt; rising tone; substorm injection; Van Allen Probes; Wave-particle interaction

Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones

Whistler-mode chorus plays an important role in the radiation belt electron dynamics. In the frequency-time spectrogram, chorus often appears as a hiss-like band and/or a series of short-lived (up to \~1 s) discrete elements. Here we present some rarely reported chorus emissions with long-lived (up to 25 s) oscillating tones observed by the Van Allen Probes in the dayside (MLT \~9\textendash14) midlatitude (|MLAT|>15\textdegree) region. An oscillating tone can behave either regularly or irregularly and can even transform int ...

Gao, Zhonglei; Su, Zhenpeng; Chen, Lunjin; Zheng, Huinan; Wang, Yuming; Wang, Shui;

YEAR: 2017     DOI: 10.1002/2017GL073420

Chorus; falling tone; nonlinear generation; oscillating tone; rising tone; Van Allen Probes

Oxygen cyclotron harmonic waves observed by the Van Allen Probes

Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere (L~5) off the magnetic equator (MLAT~-7.5\textdegree) during a magnetic storm. We find that the multiple-harmonic emissions have their PSD peaks at 2~8 equatorial oxygen gyro-harmonics (f~nfO+, n=2~8) while the fundamental mode (n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observatio ...

Xiongdong, Yu; Zhigang, Yuan; Dedong, Wang; Shiyong, Huang; Haimeng, Li; Tao, Yu; Zheng, Qiao;

YEAR: 2017     DOI: 10.1007/s11430-016-9024-3

Oxygen Cyclotron Harmonic Waves; Radiation belt; Ring current ions; Van Allen Probes

A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly dist ...

Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.;

YEAR: 2017     DOI: 10.1002/2017GL073116

butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plas ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation

2016

Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simu ...

Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

YEAR: 2016     DOI: 10.1002/2016JA022546

EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction

A Statistical Study of Whistler Waves Observed by Van Allen Probes (RBSP) and Lightning Detected by WWLLN

Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the mos ...

Zheng, Hao; Holzworth, Robert; Brundell, James; Jacobson, Abram; Wygant, John; Hospodarsky, George; Mozer, Forrest; Bonnell, John;

YEAR: 2016     DOI: 10.1002/2015JA022010

lightnting; RBSP; Van Allen Probes; VLF; whistler wave

Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons

Frequency distribution is a vital factor in determining the contribution of whistler-mode chorus to radiation belt electron dynamics. Chorus is usually considered to occur in the frequency range 0.1\textendash0.8 inline image (with the equatorial electron gyrofrequency inline image). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1 inline image observed by Van Allen Probe A on 27 August 2014. This emission propagated quasi-parallel to the magnetic field and exhibi ...

Gao, Zhonglei; Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Wang, Shui;

YEAR: 2016     DOI: 10.1002/2016GL067687

Cyclotron resonance; Hiss-like band; Low-frequency chorus; Radiation belt; Van Allen Probes; Rising tones; Van Allen Probes

2015

Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definit ...

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Wygant, J.;

YEAR: 2015     DOI: 10.1038/ncomms10096

Van Allen Probes

Relativistic electron response to the combined magnetospheric impact of a coronal mass ejection overlapping with a high-speed stream: Van Allen Probes observations

During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth.We present a detailed analysis of the relativistic electron response inc ...

Kanekal, S.; Baker, D.; Henderson, M.; Li, W.; Fennell, J.; Zheng, Y.; Richardson, I.; Jones, A.; Ali, A.; Elkington, S.; Jaynes, A.; Li, X.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.;

YEAR: 2015     DOI: 10.1002/2015JA021395

CME; HSS; Van Allen Probes; IP shock; relativistic electrons

Disappearance of plasmaspheric hiss following interplanetary shock

Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatroug ...

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

YEAR: 2015     DOI: 10.1002/2015GL063906

Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes

The global context of the 14 November, 2012 storm event

From 2 to 5 UT on 14 November, 2012, the Van Allen Probes observed repeated particle flux dropouts during the main phase of a geomagnetic storm as the satellites traversed the post-midnight to dawnside inner magnetosphere. Each flux dropout corresponded to an abrupt change in the magnetic topology, i.e., from a more dipolar configuration to a configuration with magnetic field lines stretched in the dawn-dusk direction. Geosynchronous GOES spacecraft located in the dusk and near-midnight sectors and the LANL constellation wit ...

Hwang, K.-J.; Sibeck, D.; Fok, M.-C.; Zheng, Y.; Nishimura, Y.; Lee, J.-J.; Glocer, A.; Partamies, N.; Singer, H.; Reeves, G.; Mitchell, D.; Kletzing, C.; Onsager, T.;

YEAR: 2015     DOI: 10.1002/2014JA020826

Van Allen Probes

In situ observations of EMIC waves in O + band by the Van Allen Probe A

Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band EMIC waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and 2 events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is i ...

Yu, Xiongdong; Yuan, Zhigang; Wang, Dedong; Li, Haimeng; Huang, Shiyong; Wang, Zhenzhen; Zheng, Qiao; Zhou, Mingxia; Kletzing, C.; Wygant, J.;

YEAR: 2015     DOI: 10.1002/2015GL063250

EMIC waves; O+ ion torus; oxygen band; Van Allen Probes

Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radi ...

Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

YEAR: 2015     DOI: 10.1002/2014GL062964

Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes

2014

Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt

We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 ho ...

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Zong, Q.-G.; He, Zhaoguo; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

YEAR: 2014     DOI: 10.1002/2014JA020709

Chorus wave; Electron acceleration; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of It\^o stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch ...

Zheng, Liheng; Chan, Anthony; Albert, Jay; Elkington, Scot; Koller, Josef; Horne, Richard; Glauert, Sarah; Meredith, Nigel;

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020127

adiabatic invariant coordinates; diffusion equation; fully 3-D model; Radiation belt; stochastic differential equation

Chorus-driven acceleration of radiation belt electrons in the unusual temporal/spatial regions

Cyclotron resonance with whistler-mode chorus waves is an important mechanism for the local acceleration of radiation belt energetic electrons. Such acceleration process has been widely investigated during the storm times, and its favored region is usually considered to be the low-density plasmatrough with magnetic local time (MLT) from midnight through dawn to noon. Here we present two case studies on the chorus-driven acceleration of radiation belt electrons in some \textquotedblleftunusual\textquotedblright temporal /spat ...

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Zhu, Hui;

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929875

Acceleration; Van Allen Belts; Van Allen Probes

Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generat ...

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; He, Zhaoguo; Shen, Chao; Shen, Chenglong; Wang, C.; Liu, Rui; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019919

Van Allen Probes

Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21\textendash24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L>5 ...

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; He, Zhaoguo; Zhu, Hui; Zhang, Min; Shen, Chao; Wang, Yuming; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

YEAR: 2014     DOI: 10.1002/2013GL058912

Van Allen Probes



  1