Bibliography



Found 3093 entries in the Bibliography.


Showing entries from 1 through 50


2020

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

Abstract This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmid ...

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

YEAR: 2020     DOI: 10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current; Van Allen Probes

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

Abstract This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmid ...

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

YEAR: 2020     DOI: 10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current; Van Allen Probes

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

Abstract This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmid ...

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

YEAR: 2020     DOI: 10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current; Van Allen Probes

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

Abstract This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmid ...

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

YEAR: 2020     DOI: 10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current; Van Allen Probes

Simultaneous Observations of Electromagnetic Ion Cyclotron (EMIC) Waves and Pitch Angle Scattering During a Van Allen Probes Conjunction

Abstract On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the ...

Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.;

YEAR: 2020     DOI: 10.1029/2019JA027424

EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering

Simultaneous Observations of Electromagnetic Ion Cyclotron (EMIC) Waves and Pitch Angle Scattering During a Van Allen Probes Conjunction

Abstract On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the ...

Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.;

YEAR: 2020     DOI: 10.1029/2019JA027424

EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering

Simultaneous Observations of Electromagnetic Ion Cyclotron (EMIC) Waves and Pitch Angle Scattering During a Van Allen Probes Conjunction

Abstract On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the ...

Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.;

YEAR: 2020     DOI: 10.1029/2019JA027424

EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering

Raytracing Study of Source Regions of Whistler Mode Wave Power Distribution Relative to the Plasmapause

Abstract A comprehensive numerical raytracing study of whistler mode wave power with the inclusion of finite background electron and ion temperature is performed in order to investigate wave power distribution in relation to the plasmapause. Both Landau damping and linear growth of whistler mode waves are taken into account using a bi-Maxwellian hot electron distribution as well as an isotropic hot electron distribution. Isotropic and bi-Maxwellian distributions yield similar results of statistical spatial wave power for fre ...

Maxworth, A.; Gołkowski, M.; Malaspina, D.; Jaynes, A.;

YEAR: 2020     DOI: 10.1029/2019JA027154

hiss; plasmasphere; Warm Plasma; Raytracing; Magnetosphere; Van Allen Probes

Raytracing Study of Source Regions of Whistler Mode Wave Power Distribution Relative to the Plasmapause

Abstract A comprehensive numerical raytracing study of whistler mode wave power with the inclusion of finite background electron and ion temperature is performed in order to investigate wave power distribution in relation to the plasmapause. Both Landau damping and linear growth of whistler mode waves are taken into account using a bi-Maxwellian hot electron distribution as well as an isotropic hot electron distribution. Isotropic and bi-Maxwellian distributions yield similar results of statistical spatial wave power for fre ...

Maxworth, A.; Gołkowski, M.; Malaspina, D.; Jaynes, A.;

YEAR: 2020     DOI: 10.1029/2019JA027154

hiss; plasmasphere; Warm Plasma; Raytracing; Magnetosphere; Van Allen Probes

Raytracing Study of Source Regions of Whistler Mode Wave Power Distribution Relative to the Plasmapause

Abstract A comprehensive numerical raytracing study of whistler mode wave power with the inclusion of finite background electron and ion temperature is performed in order to investigate wave power distribution in relation to the plasmapause. Both Landau damping and linear growth of whistler mode waves are taken into account using a bi-Maxwellian hot electron distribution as well as an isotropic hot electron distribution. Isotropic and bi-Maxwellian distributions yield similar results of statistical spatial wave power for fre ...

Maxworth, A.; Gołkowski, M.; Malaspina, D.; Jaynes, A.;

YEAR: 2020     DOI: 10.1029/2019JA027154

hiss; plasmasphere; Warm Plasma; Raytracing; Magnetosphere; Van Allen Probes

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

Abstract The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not dire ...

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

YEAR: 2020     DOI: 10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

Abstract The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not dire ...

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

YEAR: 2020     DOI: 10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

Abstract The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not dire ...

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

YEAR: 2020     DOI: 10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

Abstract The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not dire ...

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

YEAR: 2020     DOI: 10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies

Abstract Observationally, electron cyclotron harmonic (ECH) waves are often terminated at the outer boundary of the plasmasphere boundary layer (PBL, i.e., plasmapause). Physics of this empirical relation is not well established. In this study, two categories of ECH waves are shown by their different behaviors near PBL. For Category I, all bands of ECH waves terminate at PBL because the density ratio (nh/nc) between hot and cold electrons decreases dramatically across PBL. For Category II, ECH waves, especially the lower har ...

Liu, Xu; Chen, Lunjin; Xia, Zhiyang;

YEAR: 2020     DOI: 10.1029/2020GL087365

two types of ECH wave; Plasmapause; instability; excitation and attenuation mechanism; statistical characteristics of two types of ECH wave; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Quantifying the Effect of Plasmaspheric Hiss on the Electron Loss from the Slot Region

Abstract We present global statistical models of both wave amplitude and wave normal angle (WNA) of plasmaspheric hiss using Van Allen Probe-A observations. They utilize the time history of solar wind parameters, i.e., interplanetary magnetic field BZ and solar wind speed, and the AE index for each measurement of hiss waves as inputs. The solar wind parameter-based model generally results in higher performance than using only the AE index as an input. Both observations and model results reveal a clear dependence of hiss wave ...

Kim, Kyung-Chan; Shprits, Yuri; Wang, Dedong;

YEAR: 2020     DOI: 10.1029/2019JA027555

Plasmaspheric Hiss; Van Allen Probes; Electron slot region; Statistical modeling; Diffusion simulation; Wave-particle interaction

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit

Abstract Forecasting relativistic electron fluxes at geostationary Earth orbit (GEO) has been a long-term goal of the scientific community, and significant advances have been made in the past, but the relation to the interior of the radiation belts, that is, to lower L-shells, is still not clear. In this work we have identified 60 relativistic electron enhancement events at GEO to study the radial response of outer belt fluxes and the correlation between the fluxes at GEO and those at lower L-shells. The enhancement events o ...

Pinto, Victor; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

YEAR: 2020     DOI: 10.1029/2019JA027660

Radiation belts; relativistic electrons; geosynchronous orbit; Outer Belt; flux correlation; enhancement events; Van Allen Probes

Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit

Abstract Forecasting relativistic electron fluxes at geostationary Earth orbit (GEO) has been a long-term goal of the scientific community, and significant advances have been made in the past, but the relation to the interior of the radiation belts, that is, to lower L-shells, is still not clear. In this work we have identified 60 relativistic electron enhancement events at GEO to study the radial response of outer belt fluxes and the correlation between the fluxes at GEO and those at lower L-shells. The enhancement events o ...

Pinto, Victor; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

YEAR: 2020     DOI: 10.1029/2019JA027660

Radiation belts; relativistic electrons; geosynchronous orbit; Outer Belt; flux correlation; enhancement events; Van Allen Probes

Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit

Abstract Forecasting relativistic electron fluxes at geostationary Earth orbit (GEO) has been a long-term goal of the scientific community, and significant advances have been made in the past, but the relation to the interior of the radiation belts, that is, to lower L-shells, is still not clear. In this work we have identified 60 relativistic electron enhancement events at GEO to study the radial response of outer belt fluxes and the correlation between the fluxes at GEO and those at lower L-shells. The enhancement events o ...

Pinto, Victor; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

YEAR: 2020     DOI: 10.1029/2019JA027660

Radiation belts; relativistic electrons; geosynchronous orbit; Outer Belt; flux correlation; enhancement events; Van Allen Probes

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in t ...

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in t ...

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in t ...

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ...

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ...

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ...

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ...

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ...

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

Abstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mod ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2020     DOI: 10.1029/2020GL087503

lightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

Abstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mod ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2020     DOI: 10.1029/2020GL087503

lightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

Abstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mod ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2020     DOI: 10.1029/2020GL087503

lightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

Abstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mod ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2020     DOI: 10.1029/2020GL087503

lightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

Abstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mod ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2020     DOI: 10.1029/2020GL087503

lightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes



  1      2      3      4      5      6