Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 3761 entries in the Bibliography.
Showing entries from 1 through 50
2021 |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) ... Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095495 Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes |
A statistical analysis of duration and frequency chirping rate of falling tone chorus AbstractThe duration (τ) and chirping rate (Γ) of whistler mode chorus waves are two of the most important properties to understand chorus generation mechanism and to quantify effects of nonlinear wave particle interactions on radiation belt electron acceleration. In this study, we perform the first statistical analysis of the duration and chirping rate of falling tone chorus elements using Van Allen Probes data.We found that τ increases and Γ decreases with increasing L-shell, although the dependence is weak. The durati ... Xie, Yi; Teng, Shangchun; Wu, Yifan; Tao, Xin; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL095349 chorus waves; falling tone; Frequency chirping; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with ... Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban; Published by: Geophysical Research Letters Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL094494 pulsating aurora; Microbursts; chorus waves; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
Quantitative assessment of protons during the solar proton events of September 2017 Abstract We present multi-spacecraft observations of the proton fluxes spanning from 1.5-433 MeV for the largest solar proton event of solar cycle 24, i.e. 7 and 10 September 2017. In September 2017, M5.5 flare on 4 September, X9.3 flare on 6 September and X8.2 flare on 10 September gave rise to solar proton event when observed by near-Earth spacecrafts. On 7 September and 10 September 2017, a strong enhancement in the proton intensities was observed by ACE and WIND at L1 and Van Allen Probes, GOES-15 and POES-19 in the Eart ... Pandya, Megha; Veenadhari, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029458 innermagnetosphere; SEP event; Radiation belt; Proton flux; Van Allen Probes |
Quantitative assessment of protons during the solar proton events of September 2017 Abstract We present multi-spacecraft observations of the proton fluxes spanning from 1.5-433 MeV for the largest solar proton event of solar cycle 24, i.e. 7 and 10 September 2017. In September 2017, M5.5 flare on 4 September, X9.3 flare on 6 September and X8.2 flare on 10 September gave rise to solar proton event when observed by near-Earth spacecrafts. On 7 September and 10 September 2017, a strong enhancement in the proton intensities was observed by ACE and WIND at L1 and Van Allen Probes, GOES-15 and POES-19 in the Eart ... Pandya, Megha; Veenadhari, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029458 innermagnetosphere; SEP event; Radiation belt; Proton flux; Van Allen Probes |
Electromagnetic characteristics of fast magnetosonic waves in the inner magnetosphere Abstract In evaluating the effects of fast magnetosonic (MS) waves on magnetospheric particles, their magnetic spectra are often obtained from satellite observations, while electric field components are usually derived under the cold plasma approximation. However, such an approximation has not been verified with in situ observations yet. In this paper, we report the electromagnetic characteristic for MS waves in various plasma environments with observations of the Van Allen Probe A. It is found that a considerable number of ... Yu, Xiongdong; Yuan, Zhigang; Yao, Fei; Ouyang, Zhihai; Wang, Dedong; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029759 Fast Magnetosonic Waves; Electromagnetic characteristics; Van Allen Probes; Cold plasma approximation |
Electromagnetic characteristics of fast magnetosonic waves in the inner magnetosphere Abstract In evaluating the effects of fast magnetosonic (MS) waves on magnetospheric particles, their magnetic spectra are often obtained from satellite observations, while electric field components are usually derived under the cold plasma approximation. However, such an approximation has not been verified with in situ observations yet. In this paper, we report the electromagnetic characteristic for MS waves in various plasma environments with observations of the Van Allen Probe A. It is found that a considerable number of ... Yu, Xiongdong; Yuan, Zhigang; Yao, Fei; Ouyang, Zhihai; Wang, Dedong; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029759 Fast Magnetosonic Waves; Electromagnetic characteristics; Van Allen Probes; Cold plasma approximation |
Electromagnetic characteristics of fast magnetosonic waves in the inner magnetosphere Abstract In evaluating the effects of fast magnetosonic (MS) waves on magnetospheric particles, their magnetic spectra are often obtained from satellite observations, while electric field components are usually derived under the cold plasma approximation. However, such an approximation has not been verified with in situ observations yet. In this paper, we report the electromagnetic characteristic for MS waves in various plasma environments with observations of the Van Allen Probe A. It is found that a considerable number of ... Yu, Xiongdong; Yuan, Zhigang; Yao, Fei; Ouyang, Zhihai; Wang, Dedong; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029759 Fast Magnetosonic Waves; Electromagnetic characteristics; Van Allen Probes; Cold plasma approximation |
Electromagnetic characteristics of fast magnetosonic waves in the inner magnetosphere Abstract In evaluating the effects of fast magnetosonic (MS) waves on magnetospheric particles, their magnetic spectra are often obtained from satellite observations, while electric field components are usually derived under the cold plasma approximation. However, such an approximation has not been verified with in situ observations yet. In this paper, we report the electromagnetic characteristic for MS waves in various plasma environments with observations of the Van Allen Probe A. It is found that a considerable number of ... Yu, Xiongdong; Yuan, Zhigang; Yao, Fei; Ouyang, Zhihai; Wang, Dedong; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029759 Fast Magnetosonic Waves; Electromagnetic characteristics; Van Allen Probes; Cold plasma approximation |
Realistic electron diffusion rates and lifetimes due to scattering by electron holes AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ... Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029380 diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes |
Realistic electron diffusion rates and lifetimes due to scattering by electron holes AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ... Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029380 diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes |
Realistic electron diffusion rates and lifetimes due to scattering by electron holes AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ... Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029380 diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes |
Realistic electron diffusion rates and lifetimes due to scattering by electron holes AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ... Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029380 diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes |
Realistic electron diffusion rates and lifetimes due to scattering by electron holes AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ... Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029380 diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes |
Trapping and amplification of unguided mode EMIC waves in the radiation belt AbstractElectromagnetic ion cyclotron (EMIC) waves can cause the scattering loss of the relativistic electrons in the radiation belt. They can be classified into the guided mode and the unguided mode, according to waves propagation behavior. The guided mode waves have been widely investigated in the radiation belt, but the observation of the unguided mode waves have not been expected. Based on the observations of Van Allen Probes, we demonstrate for the first time the existence of the intense unguided L-mode EMIC waves in th ... Wang, Geng; Gao, Zhonglei; Wu, MingYu; Wang, GuoQiang; Xiao, SuDong; Chen, YuanQiang; Zou, Zhengyang; Zhang, TieLong; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029322 EMIC waves; unguided mode; Radiation belt; ion abundance ratios; Wave trapping; growth rate; Van Allen Probes |
Trapping and amplification of unguided mode EMIC waves in the radiation belt AbstractElectromagnetic ion cyclotron (EMIC) waves can cause the scattering loss of the relativistic electrons in the radiation belt. They can be classified into the guided mode and the unguided mode, according to waves propagation behavior. The guided mode waves have been widely investigated in the radiation belt, but the observation of the unguided mode waves have not been expected. Based on the observations of Van Allen Probes, we demonstrate for the first time the existence of the intense unguided L-mode EMIC waves in th ... Wang, Geng; Gao, Zhonglei; Wu, MingYu; Wang, GuoQiang; Xiao, SuDong; Chen, YuanQiang; Zou, Zhengyang; Zhang, TieLong; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029322 EMIC waves; unguided mode; Radiation belt; ion abundance ratios; Wave trapping; growth rate; Van Allen Probes |