Bibliography



Found 4135 entries in the Bibliography.


Showing entries from 1 through 50


2021

A Statistical Study of Low-Energy Ion Flux Enhancements by EMIC Waves in the Inner Magnetosphere

Abstract We have studied the statistical properties of low-energy proton (H+) and helium (He+) ion flux enhancements associated with EMIC waves in the inner magnetosphere using Van Allen Probes data for 2013-2017. We identified 167 low-energy ion flux enhancements when the EMIC waves occurred in a He-band or in a multiple band (H-band and He-band) with strong He-band and weak H-band wave activity and found that most of them occurred from the noon to the premidnight sector near the magnetic equator just inside the plasmapause ...

Lee, Junhyun; Kim, Khan-Hyuk; Lee, Ensang;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029793

Van Allen Probes

A Statistical Study of Low-Energy Ion Flux Enhancements by EMIC Waves in the Inner Magnetosphere

Abstract We have studied the statistical properties of low-energy proton (H+) and helium (He+) ion flux enhancements associated with EMIC waves in the inner magnetosphere using Van Allen Probes data for 2013-2017. We identified 167 low-energy ion flux enhancements when the EMIC waves occurred in a He-band or in a multiple band (H-band and He-band) with strong He-band and weak H-band wave activity and found that most of them occurred from the noon to the premidnight sector near the magnetic equator just inside the plasmapause ...

Lee, Junhyun; Kim, Khan-Hyuk; Lee, Ensang;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029793

Van Allen Probes

Realistic electron diffusion rates and lifetimes due to scattering by electron holes

AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ...

Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029380

diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes

Realistic electron diffusion rates and lifetimes due to scattering by electron holes

AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ...

Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029380

diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes

Realistic electron diffusion rates and lifetimes due to scattering by electron holes

AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraf ...

Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029380

diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes

Trapping and amplification of unguided mode EMIC waves in the radiation belt

AbstractElectromagnetic ion cyclotron (EMIC) waves can cause the scattering loss of the relativistic electrons in the radiation belt. They can be classified into the guided mode and the unguided mode, according to waves propagation behavior. The guided mode waves have been widely investigated in the radiation belt, but the observation of the unguided mode waves have not been expected. Based on the observations of Van Allen Probes, we demonstrate for the first time the existence of the intense unguided L-mode EMIC waves in th ...

Wang, Geng; Gao, Zhonglei; Wu, MingYu; Wang, GuoQiang; Xiao, SuDong; Chen, YuanQiang; Zou, Zhengyang; Zhang, TieLong;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029322

EMIC waves; unguided mode; Radiation belt; ion abundance ratios; Wave trapping; growth rate; Van Allen Probes

Simultaneous observations and combined effects of electromagnetic ion cyclotron waves and magnetosonic waves

Abstract Magnetosonic (MS) waves and Electromagnetic ion cyclotron (EMIC) waves are important plasma waves in the magnetosphere. Using the Van Allen Probes observations from 2012 to 2017, we constructed the global distribution of simultaneous occurrence of MS and EMIC waves. We found a total of 214 events, and the waves distribute from the noon sector to the duskside. Furthermore, we quantitatively analyze the combined effects of both waves on protons and electrons by calculating of particle diffusion coefficients and 2-D Fo ...

Teng, S.; Ma, Q.; Tao, X.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093885

EMIC waves; MS waves; Wave-particle interaction; diffusion coefficients; Van Allen Probes

Reconstructing the dynamics of the outer electron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3D code

Abstract Reconstruction and prediction of the state of the near-Earth space environment is important for anomaly analysis, development of empirical models and understanding of physical processes. Accurate reanalysis or predictions that account for uncertainties in the associated model and the observations, can be obtained by means of data assimilation. The ensemble Kalman filter (EnKF) is one of the most promising filtering tools for non-linear and high dimensional systems in the context of terrestrial weather prediction. In ...

Tibocha, A.; de Wiljes, J.; . Y. Shprits, Y; Aseev, N.;

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002672

Kalman Filter; Ensemble Kalman filter; forecasting; Van Allen Probes

Reconstructing the dynamics of the outer electron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3D code

Abstract Reconstruction and prediction of the state of the near-Earth space environment is important for anomaly analysis, development of empirical models and understanding of physical processes. Accurate reanalysis or predictions that account for uncertainties in the associated model and the observations, can be obtained by means of data assimilation. The ensemble Kalman filter (EnKF) is one of the most promising filtering tools for non-linear and high dimensional systems in the context of terrestrial weather prediction. In ...

Tibocha, A.; de Wiljes, J.; . Y. Shprits, Y; Aseev, N.;

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002672

Kalman Filter; Ensemble Kalman filter; forecasting; Van Allen Probes

PreMevE Update: Forecasting Ultra-relativistic Electrons inside Earth’s Outer Radiation Belt

Abstract Energetic electrons inside Earth’s Van Allen belts pose a major radiation threat to space-borne electronics that often play vital roles in modern society. Ultra-relativistic electrons with energies greater than or equal to two Megaelectron-volt (MeV) are of particular interest, and thus forecasting these ≥2 MeV electrons has significant meaning to all space sectors. Here we update the latest development of the predictive model for MeV electrons in the outer radiation belt. The new version, called PreMevE-2E, for ...

Sinha, Saurabh; Chen, Yue; Lin, Youzuo; de Lima, Rafael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021SW002773

Supervised Machine Learning; Van Allen electron radiation belt; Predicting ultra-relativistic electrons; Van Allen Probes

PreMevE Update: Forecasting Ultra-relativistic Electrons inside Earth’s Outer Radiation Belt

Abstract Energetic electrons inside Earth’s Van Allen belts pose a major radiation threat to space-borne electronics that often play vital roles in modern society. Ultra-relativistic electrons with energies greater than or equal to two Megaelectron-volt (MeV) are of particular interest, and thus forecasting these ≥2 MeV electrons has significant meaning to all space sectors. Here we update the latest development of the predictive model for MeV electrons in the outer radiation belt. The new version, called PreMevE-2E, for ...

Sinha, Saurabh; Chen, Yue; Lin, Youzuo; de Lima, Rafael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021SW002773

Supervised Machine Learning; Van Allen electron radiation belt; Predicting ultra-relativistic electrons; Van Allen Probes

The Scalable Plasma Ion Composition and Electron Density (SPICED) model for Earth’s inner magnetosphere

Abstract The plasma mass loading of the terrestrial equatorial inner magnetosphere is a key determinant of the characteristics and propagation of ULF waves. Electron number density is also an important factor for other types of waves such as chorus, hiss and EMIC waves. In this paper, we use Van Allen Probe data from September 2012 to February 2019 to create average models of electron densities and average ion mass in the plasmasphere and plasmatrough, near the Earth’s magnetic equator. These models are combined to provide ...

James, Matthew; Yeoman, Tim; Jones, Petra; Sandhu, Jasmine; Goldstein, Jerry;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029565

Van Allen Probes

The Scalable Plasma Ion Composition and Electron Density (SPICED) model for Earth’s inner magnetosphere

Abstract The plasma mass loading of the terrestrial equatorial inner magnetosphere is a key determinant of the characteristics and propagation of ULF waves. Electron number density is also an important factor for other types of waves such as chorus, hiss and EMIC waves. In this paper, we use Van Allen Probe data from September 2012 to February 2019 to create average models of electron densities and average ion mass in the plasmasphere and plasmatrough, near the Earth’s magnetic equator. These models are combined to provide ...

James, Matthew; Yeoman, Tim; Jones, Petra; Sandhu, Jasmine; Goldstein, Jerry;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029565

Van Allen Probes

The Scalable Plasma Ion Composition and Electron Density (SPICED) model for Earth’s inner magnetosphere

Abstract The plasma mass loading of the terrestrial equatorial inner magnetosphere is a key determinant of the characteristics and propagation of ULF waves. Electron number density is also an important factor for other types of waves such as chorus, hiss and EMIC waves. In this paper, we use Van Allen Probe data from September 2012 to February 2019 to create average models of electron densities and average ion mass in the plasmasphere and plasmatrough, near the Earth’s magnetic equator. These models are combined to provide ...

James, Matthew; Yeoman, Tim; Jones, Petra; Sandhu, Jasmine; Goldstein, Jerry;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029565

Van Allen Probes

The Scalable Plasma Ion Composition and Electron Density (SPICED) model for Earth’s inner magnetosphere

Abstract The plasma mass loading of the terrestrial equatorial inner magnetosphere is a key determinant of the characteristics and propagation of ULF waves. Electron number density is also an important factor for other types of waves such as chorus, hiss and EMIC waves. In this paper, we use Van Allen Probe data from September 2012 to February 2019 to create average models of electron densities and average ion mass in the plasmasphere and plasmatrough, near the Earth’s magnetic equator. These models are combined to provide ...

James, Matthew; Yeoman, Tim; Jones, Petra; Sandhu, Jasmine; Goldstein, Jerry;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029565

Van Allen Probes

Global Survey of Electron Precipitation due to Hiss Waves in the Earth s Plasmasphere and Plumes

Abstract We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5-year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation at L > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause ...

Ma, Q.; Li, W.; Zhang, X.-J.; Bortnik, J.; Shen, X.-C.; Connor, H.; Boyd, A.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029644

electron precipitation; hiss wave; plasmasphere; plasmaspheric plume; Precipitating Energy Flux; Van Allen Probes Survey; Van Allen Probes

Global Survey of Electron Precipitation due to Hiss Waves in the Earth s Plasmasphere and Plumes

Abstract We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5-year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation at L > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause ...

Ma, Q.; Li, W.; Zhang, X.-J.; Bortnik, J.; Shen, X.-C.; Connor, H.; Boyd, A.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029644

electron precipitation; hiss wave; plasmasphere; plasmaspheric plume; Precipitating Energy Flux; Van Allen Probes Survey; Van Allen Probes

Global Survey of Electron Precipitation due to Hiss Waves in the Earth s Plasmasphere and Plumes

Abstract We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5-year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation at L > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause ...

Ma, Q.; Li, W.; Zhang, X.-J.; Bortnik, J.; Shen, X.-C.; Connor, H.; Boyd, A.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029644

electron precipitation; hiss wave; plasmasphere; plasmaspheric plume; Precipitating Energy Flux; Van Allen Probes Survey; Van Allen Probes

Global Survey of Electron Precipitation due to Hiss Waves in the Earth s Plasmasphere and Plumes

Abstract We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5-year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation at L > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause ...

Ma, Q.; Li, W.; Zhang, X.-J.; Bortnik, J.; Shen, X.-C.; Connor, H.; Boyd, A.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029644

electron precipitation; hiss wave; plasmasphere; plasmaspheric plume; Precipitating Energy Flux; Van Allen Probes Survey; Van Allen Probes

Superposed Epoch Analysis of Dispersionless Particle Injections Inside Geosynchronous Orbit

AbstractDispersionless injections, involving sudden, simultaneous flux enhancements of energetic particles over some broad range of energy, are a characteristic signature of the particles that are experiencing a significant acceleration and/or rapid inward transport at the leading edge of injections. We have statistically analyzed data from Van Allen Probes (also known as RBSP ) to reveal where the proton (H+) and electron (e–) dispersionless injections occur preferentially inside geosynchronous orbit and how they develop ...

Motoba, T.; Ohtani, S.; Gkioulidou, M.; . Y. Ukhorskiy, A; Lanzerotti, L.; Claudepierre, S.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029546

Dispersionless injections; substorms; inner magnetosphere; Van Allen Probes

Superposed Epoch Analysis of Dispersionless Particle Injections Inside Geosynchronous Orbit

AbstractDispersionless injections, involving sudden, simultaneous flux enhancements of energetic particles over some broad range of energy, are a characteristic signature of the particles that are experiencing a significant acceleration and/or rapid inward transport at the leading edge of injections. We have statistically analyzed data from Van Allen Probes (also known as RBSP ) to reveal where the proton (H+) and electron (e–) dispersionless injections occur preferentially inside geosynchronous orbit and how they develop ...

Motoba, T.; Ohtani, S.; Gkioulidou, M.; . Y. Ukhorskiy, A; Lanzerotti, L.; Claudepierre, S.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029546

Dispersionless injections; substorms; inner magnetosphere; Van Allen Probes

Observational evidence of the excitation of magnetosonic waves by an He ion ring distribution

Abstract We report plasma wave observations of equatorial magnetosonic waves at integer harmonics of the local gyrofrequency of doubly-ionized helium (He). The waves were observed by Van Allen Probe A on 08 Feb 2014 when the spacecraft was in the afternoon magnetic local time sector near inside of the plasmasphere. Analysis of the complementary in-situ energetic ion measurements (1-300 keV) reveals the presence of a helium ion ring distribution centered near 30 keV. Theoretical linear growth rate calculations suggest that th ...

Claudepierre, S.; Liu, X.; Chen, L.; Takahashi, K.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029532

magnetosonic waves; ion Bernstein waves; ring distribution; alpha particles; Plasma instability; ring current; Van Allen Probes

Observational evidence of the excitation of magnetosonic waves by an He ion ring distribution

Abstract We report plasma wave observations of equatorial magnetosonic waves at integer harmonics of the local gyrofrequency of doubly-ionized helium (He). The waves were observed by Van Allen Probe A on 08 Feb 2014 when the spacecraft was in the afternoon magnetic local time sector near inside of the plasmasphere. Analysis of the complementary in-situ energetic ion measurements (1-300 keV) reveals the presence of a helium ion ring distribution centered near 30 keV. Theoretical linear growth rate calculations suggest that th ...

Claudepierre, S.; Liu, X.; Chen, L.; Takahashi, K.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029532

magnetosonic waves; ion Bernstein waves; ring distribution; alpha particles; Plasma instability; ring current; Van Allen Probes

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ...

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ...

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ...

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ...

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ...

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ...

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ...

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis

Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1-2 days. By contrast, High-Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing i ...

Da Silva, L.; Shi, J.; Alves, L.; Sibeck, D.; Marchezi, J.; Medeiros, C.; Vieira, L.; Agapitov, O.; Cardoso, F.; Souza, V.; Dal Lago, A.; Jauer, P.; Wang, C.; Li, H.; Liu, Z.; Alves, M.; Rockenbach, M.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029363

outer radiation belt; high-energy electron flux; high speed solar wind stream; ultra low frequency waves; whistler-mode chorus waves; Electron flux enhancement; Van Allen Probes

ULF-modulation of whistler-mode waves in the inner magnetosphere during solar wind compression

Abstract The solar wind plays important roles on terrestrial magnetosphere dynamics, including the particle population and plasma waves generation. Here we report an interesting event that ULF waves are enhanced right after solar wind compression and the compressional mode ULF wave subsequently modulates both the intensity and energy flux direction of whistler-mode waves. Quasi-periodic whistler-mode wave packets are observed around L=5.6 at noon sector by Van Allen Probes. Growth rate calculation demonstrates that the compr ...

Shang, Xiongjun; Liu, Si; Chen, Lunjin; Gao, Zhonglei; Wang, Geng; He, Qian; Li, Tong; Xiao, Fuliang;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029353

Van Allen Probes

ULF-modulation of whistler-mode waves in the inner magnetosphere during solar wind compression

Abstract The solar wind plays important roles on terrestrial magnetosphere dynamics, including the particle population and plasma waves generation. Here we report an interesting event that ULF waves are enhanced right after solar wind compression and the compressional mode ULF wave subsequently modulates both the intensity and energy flux direction of whistler-mode waves. Quasi-periodic whistler-mode wave packets are observed around L=5.6 at noon sector by Van Allen Probes. Growth rate calculation demonstrates that the compr ...

Shang, Xiongjun; Liu, Si; Chen, Lunjin; Gao, Zhonglei; Wang, Geng; He, Qian; Li, Tong; Xiao, Fuliang;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029353

Van Allen Probes

Van Allen Probes Observations of Multi-MeV Electron Drift-Periodic Flux Oscillations in Earth’s Outer Radiation Belt During the March 2017 Event

Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ...

Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029284

Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes

Van Allen Probes Observations of Multi-MeV Electron Drift-Periodic Flux Oscillations in Earth’s Outer Radiation Belt During the March 2017 Event

Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ...

Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029284

Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes

Van Allen Probes Observations of Multi-MeV Electron Drift-Periodic Flux Oscillations in Earth’s Outer Radiation Belt During the March 2017 Event

Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ...

Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029284

Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes

Van Allen Probes Observations of Multi-MeV Electron Drift-Periodic Flux Oscillations in Earth’s Outer Radiation Belt During the March 2017 Event

Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ...

Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029284

Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes

Van Allen Probes Observations of Multi-MeV Electron Drift-Periodic Flux Oscillations in Earth’s Outer Radiation Belt During the March 2017 Event

Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ...

Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029284

Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes

Van Allen Probes Observations of Multi-MeV Electron Drift-Periodic Flux Oscillations in Earth’s Outer Radiation Belt During the March 2017 Event

Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ...

Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029284

Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes

Van Allen Probes Observations of Multi-MeV Electron Drift-Periodic Flux Oscillations in Earth’s Outer Radiation Belt During the March 2017 Event

Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4-5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long-lasting, drift-periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up t ...

Zhao, Hong; Sarris, Theodore; Li, Xinlin; Weiner, Max; Huckabee, Isabela; Baker, Daniel; Jaynes, Allison; Kanekal, Shrikanth; Elkington, Scot; Barani, Mohammad; Tu, Weichao; Liu, Wenlong; Zhang, Dianjun; Hartinger, Michael;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029284

Radiation belt; multi-MeV electrons; radial diffusion; ULF waves; Wave-particle interaction; Phase space density radial gradient; Van Allen Probes

Low Frequency ULF Waves in the Earth’s Inner Magnetosphere: Statistics During Coronal Mass Ejections and Seeding of EMIC Waves

Abstract Here we perform a statistical analysis of low frequency ultra-low-frequency (ULF) waves (mHz-Hz) in the Earth’s inner magnetosphere excluding electromagnetic ion cyclotron (EMIC) waves concurrently observed. We use the magnetic field data from the two Van Allen Probes during their first magnetic local time (MLT) revolution that cover the periods of coronal mass ejections. The major results of our analysis are as follows. (1) Spectra of both the transverse and compressional ULF waves are well approximated by the po ...

Gamayunov, Konstantin; Engebretson, Mark;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029247

coronal mass ejection; low frequency ULF waves; Earth s inner magnetosphere; statistics of ULF waves; turbulent energy cascade; seeding of EMIC waves; Van Allen Probes

Direct evidence reveals transmitter signal propagation in the magnetosphere

AbstractSignals from very-low-frequency transmitters on the ground are known to induce energetic electron precipitation from the Earth’s radiation belts. The effectiveness of this mechanism depends on the propagation characteristics of those signals in the magnetosphere, and in particular whether the signals are ducted or nonducted along channels of enhanced plasma density, analogous to optical fibres. Here we perform a statistical analysis of in-situ waveform data collected by the Van Allen Probes satellites that shows th ...

Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; Horne, Richard;

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093987

VLF transmitters; ducted propagation; nonducted propagation; Magnetosphere; Van Allen Probes

Direct evidence reveals transmitter signal propagation in the magnetosphere

AbstractSignals from very-low-frequency transmitters on the ground are known to induce energetic electron precipitation from the Earth’s radiation belts. The effectiveness of this mechanism depends on the propagation characteristics of those signals in the magnetosphere, and in particular whether the signals are ducted or nonducted along channels of enhanced plasma density, analogous to optical fibres. Here we perform a statistical analysis of in-situ waveform data collected by the Van Allen Probes satellites that shows th ...

Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; Horne, Richard;

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093987

VLF transmitters; ducted propagation; nonducted propagation; Magnetosphere; Van Allen Probes

Frequency-Dependent Modulation of Whistler-mode Waves By Density Irregularities During the Recovery Phase of a Geomagnetic Storm

Abstract Density irregularities near the plasmapause are commonly observed and play an important role in whistler-mode wave excitation and propagation. In this study, we report a frequency-dependent modulation event of whistler-mode waves by background density irregularities during a geomagnetic storm. Higher-frequency whistler waves (near 0.5 fce, where fce is the equatorial electron cyclotron frequency) are trapped in the density trough regions due to the small refractive index near the parallel direction, while lower-freq ...

Liu, Xu; Gu, Wenyao; Xia, Zhiyang; Chen, Lunjin; Horne, Richard;

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093095

Van Allen Probes

Frequency-Dependent Modulation of Whistler-mode Waves By Density Irregularities During the Recovery Phase of a Geomagnetic Storm

Abstract Density irregularities near the plasmapause are commonly observed and play an important role in whistler-mode wave excitation and propagation. In this study, we report a frequency-dependent modulation event of whistler-mode waves by background density irregularities during a geomagnetic storm. Higher-frequency whistler waves (near 0.5 fce, where fce is the equatorial electron cyclotron frequency) are trapped in the density trough regions due to the small refractive index near the parallel direction, while lower-freq ...

Liu, Xu; Gu, Wenyao; Xia, Zhiyang; Chen, Lunjin; Horne, Richard;

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093095

Van Allen Probes

A Comparison of Radial Diffusion Coefficients in 1-D and 3-D Long-Term Radiation Belt Simulations

AbstractRadial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the dataset used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), Brautigam et al. (2005), Ozeke et al. (2014), Ali et al. (2015); Ali et al. (2016); Ali (2016), and Liu et al. (2016) on long-term radiation belt modeling using the Versatile El ...

. Y. Drozdov, A; Allison, H.; . Y. Shprits, Y; Elkington, S.R.; Aseev, N.A.;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028707

Radiation belts; radial diffusion; VERB code; Van Allen Probes

A Comparison of Radial Diffusion Coefficients in 1-D and 3-D Long-Term Radiation Belt Simulations

AbstractRadial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the dataset used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), Brautigam et al. (2005), Ozeke et al. (2014), Ali et al. (2015); Ali et al. (2016); Ali (2016), and Liu et al. (2016) on long-term radiation belt modeling using the Versatile El ...

. Y. Drozdov, A; Allison, H.; . Y. Shprits, Y; Elkington, S.R.; Aseev, N.A.;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028707

Radiation belts; radial diffusion; VERB code; Van Allen Probes

The effect of non-storm time substorms on the ring current dynamics

Abstract During geomagnetically active times such as geomagnetic storms, large amounts of energy can be released into the Earth’s magnetosphere and change the ring current intensity. Previous studies showed that significant enhancement of the ring current was related to geomagnetic storms, while few studies have examined substorm effects on ring current dynamics. In this study, we examine the ring current variation during non-storm time (SYM-H > −50 nT) substorms, especially during super-substorms ( AE > 1000 nT). We per ...

Jang, Eunjin; Yue, Chao; Zong, Qiugang; Fu, Suiyan; Fu, HaoBo;

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021032

super-substorms; ring current; ion fluxes; Van Allen Probes

Electromagnetic power of lightning superbolts from Earth to space

Lightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both fro ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Cunningham, G.; Lay, E.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2021     DOI: https://doi.org/10.1038/s41467-021-23740-6

Van Allen Probes

Electromagnetic power of lightning superbolts from Earth to space

Lightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both fro ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Cunningham, G.; Lay, E.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2021     DOI: https://doi.org/10.1038/s41467-021-23740-6

Van Allen Probes



  1      2      3      4      5      6