Found 2 entries in the Bibliography.

Showing entries from 1 through 2


On the Acceleration Mechanism of Ultrarelativistic Electrons in the Center of the Outer Radiation Belt: A Statistical Study

Using energetic particle and wave measurements from the Van Allen Probes, Polar Orbiting Environmental Satellites (POES), and Geostationary Operational Environmental Satellite (GOES), the acceleration mechanism of ultrarelativistic electrons (>3 MeV) in the center of the outer radiation belt is investigated statistically. A superposed epoch analysis is conducted using 19 storms, which caused flux enhancements of 1.8\textendash7.7 MeV electrons. The evolution of electron phase space density radial profile suggests an energy-d ...

Zhao, H.; Baker, D.N.; Li, X.; Malaspina, D.M.; Jaynes, A.N.; Kanekal, S.G.;

YEAR: 2019     DOI: 10.1029/2019JA027111

Acceleration mechanism; Inward radial diffusion; Local Acceleration; Phase space density; Radiation belts; ultrarelativistic electrons; Van Allen Probes

The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements

Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8- to 7.7-MeV electrons, though large variations exist. As the electron energy gets higher, the probabilit ...

Zhao, H.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.;

YEAR: 2019     DOI: 10.1029/2018JA026257

Acceleration mechanism; Geomagnetic storms; Radiation belt; solar wind conditions; ultrarelativistic electrons; Van Allen Probes