Bibliography





Van Allen Probes Bibliography is from August 2012 through September 2021

Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2021

Evidence of Alfvenic Poynting flux as the primary driver of auroral motion during a geomagnetic substorm

Abstract Geomagnetic substorms are major energy transfer events where energy stored in the Earths magnetotail is released into the ionosphere. Substorm phenomena, including auroral activities, earthward Poynting flux, magnetic field dipolarization, etc, have been extensively studied. However, the complex interplay among them is not fully understood. In a fortuitous event on June 07, 2013, the twin Van Allen Probes (separated by 0.4 hour in local time) observed bursts of earthward Alfvenic Poynting flux in the vicinity of the ...

Tian, S.; Colpitts, C.; Wygant, J.; Cattell, C.; Ferradas, C.; Igl, A.; Larsen, B.; Reeves, G.; Donovan, E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029019

Poynting flux; auroral physics; discrete arc; Dipolarization; Alfven waves; Van Allen Probes

2018

Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves

A magnetic conjunction between Van Allen Probes spacecraft and the Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) reveals the simultaneous occurrence of broadband Alfv\ enic fluctuations and multi-timescale modulation of enhanced atmospheric X-ray bremsstrahlung emission. The properties of the Alfv\ enic fluctuations are used to build a model for pitch angle scattering in the outer radiation belt on electron gyro-radii scale field structures. It is shown that this scattering may lead to the transport ...

Chaston, C.; Bonnell, J.; Halford, A.; Reeves, G.; Baker, D.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079527

Alfven waves; drift-bounce resonance; energetic particles; Geomagnetic storms; pitch-angle scattering; Radiation belts; Van Allen Probes

Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations

Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field-aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self-consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qu ...

Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R.;

Published by: Geophysical Research Letters      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018GL077748

Alfven waves; field line resonances; kinetic effects; numerical modeling; particle trapping; Radiation belts; Van Allen Probes

Radiation belt \textquotedblleftdropouts\textquotedblright and drift-bounce resonances in broadband electromagnetic waves

Observations during the main phase of geomagnetic storms reveal an anti-correlation between the occurrence of broadband low frequency electromagnetic waves and outer radiation belt electron flux. We show that the drift-bounce motion of electrons in the magnetic field of these waves leads to rapid electron transport. For observed spectral energy densities it is demonstrated that the wave magnetic field can drive radial diffusion via drift-bounce resonance on timescales less than a drift orbit. This process may provide outward ...

Chaston, C.; Bonnell, J.; Wygant, J.; Reeves, G.; Baker, D.; Melrose, D.;

Published by: Geophysical Research Letters      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/2017GL076362

Alfven waves; Geomagnetic storms; Radial Transport; Radiation belts; Van Allen Probes

2017

Radial transport of radiation belt electrons in kinetic field-line resonances

A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfv\ en eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport of the order of hou ...

Chaston, C.; Bonnell, J.; Wygant, J.; Reeves, G.; Baker, D.; Melrose, D.; Cairns, Iver.;

Published by: Geophysical Research Letters      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017GL074587

Alfven waves; Diffusion; field line resonances; Radiation belts; Transport; Van Allen Probes

2016

Driving ionospheric outflows and magnetospheric O + energy density with Alfv\ en waves

We show how dispersive Alfv\ en waves observed in the inner magnetosphere during geomagnetic storms can extract O+ ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of \textquotedblleftshock\textquotedblright surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O+ ...

Chaston, C.; Bonnell, J.; Reeves, G.; Skoug, R.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069008

Alfven waves; ion acceleration; Ionosphere; ionospheric outflow; ring current

2015

Extreme ionospheric ion energization and electron heating in Alfv\ en waves in the storm-time inner magnetosphere

We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to > 50 keV while the electrons are field-aligned up to ~1 keV. These particle distributions are observed during intervals of broadband low frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfv\ en waves and kinetic fi ...

Chaston, C.; Bonnell, J.; Wygant, J.; Kletzing, C.; Reeves, G.; Gerrard, A.; Lanzerotti, L.; Smith, C.;

Published by: Geophysical Research Letters      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015GL066674

Alfven waves; electron precipitation; Geomagnetic storms; ion acceleration; ion outflow; ion upflo

Broadband low frequency electromagnetic waves in the inner magnetosphere

A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field fluctuations over spacecraft frame frequencies (fsc) extending from effectively zero to fsc ≳ 100 Hz. Using observations from the Van Allen Probes we show that these waves most commonly occur pre-midnight but are observed over a range of local times extending into the dayside magnetosphere. We find that the variation of magne ...

Chaston, C.; Bonnell, J.; Kletzing, C.; Hospodarsky, G.; Wygant, J.; Smith, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021690

Alfven waves; Geomagnetic storms; ring current; turbulence; Van Allen Probes



  1