Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2020 |
Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ... Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2020JA027776 quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes |
We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the ... Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027776 quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes |
2015 |
Disappearance of plasmaspheric hiss following interplanetary shock Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatroug ... Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.; Published by: Geophysical Research Letters Published on: 03/2015 YEAR: 2015   DOI: 10.1002/2015GL063906 Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes |
1