Found 7 entries in the Bibliography.

Showing entries from 1 through 7


Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons

Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0\textendash6.0 and MLT = 18\textendash21, hiss emissions occur concurrently with a rate of >~80\%. Plume hiss can efficiently sca ...

Zhang, Wenxun; Ni, Binbin; Huang, He; Summers, Danny; Fu, Song; Xiang, Zheng; Gu, Xudong; Cao, Xing; Lou, Yuequn; Hua, Man;

YEAR: 2019     DOI: 10.1029/2018GL081863

Electron scattering; plasmaspheric plumes; plume hiss; Van Allen Probes


Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L ~ 4\textendash6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak ...

Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man;

YEAR: 2018     DOI: 10.1029/2018GL077212

Electron scattering; nightside plumes; Plasmaspheric Hiss; Van Allen Probes


VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons

Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, an ...

Ma, Qianli; Mourenas, Didier; Li, Wen; Artemyev, Anton; Thorne, Richard;

YEAR: 2017     DOI: 10.1002/2017GL073885

Electron scattering; Statistical wave model; Van Allen Probes; Van Allen Probes observation; VLF waves


Electron scattering by magnetosonic waves in the inner magnetosphere

We investigate the importance of electron scattering by magnetosonic waves in the Earth\textquoterights inner magnetosphere. A statistical survey of the magnetosonic wave amplitude and wave frequency spectrum, as a function of geomagnetic activity, is performed using the Van Allen Probes wave measurements, and is found to be generally consistent with the wave distribution obtained from previous spacecraft missions. Outside the plasmapause the statistical frequency distribution of magnetosonic waves follows the variation of t ...

Ma, Qianli; Li, Wen; Thorne, Richard; Bortnik, Jacob; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2015     DOI: 10.1002/2015JA021992

Electron scattering; magnetosonic waves; Van Allen Probes; Van Allen Probes statistics

Global Empirical Models of Plasmaspheric Hiss using Van Allen Probes

Plasmaspheric hiss is a whistler mode emission that permeates the Earth\textquoterights plasmasphere and is a significant driver of energetic electron losses through cyclotron-resonant pitch angle scattering. The EMFISIS instrument on the Van Allen Probes mission provides vastly improved measurements of the hiss wave environment including continuous measurements of the wave magnetic field cross-spectral matrix and enhanced low frequency coverage. Here, we develop empirical models of hiss wave intensity using two years of Van ...

Spasojevic, M.; Shprits, Y.Y.; Orlova, K.;

YEAR: 2015     DOI: 10.1002/2015JA021803

Electron scattering; Empirical Model; inner magnetosphere; Plasmaspheric Hiss; Van Allen Probes

Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering

In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributi ...

Artemyev, A.; Agapitov, O.; Mozer, F.; Spence, H.;

YEAR: 2015     DOI: 10.1002/2014JA020865

butterfly distribution; Electron scattering; nonadiabatic dynamics; Radiation belts; Van Allen Probes


Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves

We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming \~10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering ...

Khazanov, G.; Sibeck, D.; Tel\textquoterightnikhin, A.; Kronberg, T.;

YEAR: 2014     DOI: 10.1063/1.4892185

Diffusion; Electron scattering; Nonlinear waves; wave-particle interactions; Whistler waves