Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2017 |
Transverse eV ion heating by random electric field fluctuations in the plasmasphere Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2\textendash3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-partic ... Artemyev, A.; Mourenas, D.; Agapitov, O.; Blum, L.; Published by: Physics of Plasmas Published on: 02/2017 YEAR: 2017   DOI: 10.1063/1.4976713 electric fields; Electrostatic Waves; protons; Van Allen Probes; Wave power; Whistler waves |
2015 |
Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts Important nonlinear wave-wave and wave-particle interactions that occur in the Earth\textquoterights Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85\textordmasculine. When the pump amplitude exceeds a threshold ~5 x10^6 times the back- ground magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (~55\t ... Tejero, E.; Crabtree, C.; Blackwell, D.; Amatucci, W.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.; Published by: Physics of Plasmas Published on: 08/2015 YEAR: 2015   DOI: 10.1063/1.4928944 Electrostatic Waves; magnetic fields; Nonlinear scattering; Plasma electromagnetic waves; Whistler waves |
1