Bibliography





Van Allen Probes Bibliography is from August 2012 through September 2021

Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 9 entries in the Bibliography.


Showing entries from 1 through 9


2021

Electromagnetic characteristics of fast magnetosonic waves in the inner magnetosphere

Abstract In evaluating the effects of fast magnetosonic (MS) waves on magnetospheric particles, their magnetic spectra are often obtained from satellite observations, while electric field components are usually derived under the cold plasma approximation. However, such an approximation has not been verified with in situ observations yet. In this paper, we report the electromagnetic characteristic for MS waves in various plasma environments with observations of the Van Allen Probe A. It is found that a considerable number of ...

Yu, Xiongdong; Yuan, Zhigang; Yao, Fei; Ouyang, Zhihai; Wang, Dedong;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029759

Fast Magnetosonic Waves; Electromagnetic characteristics; Van Allen Probes; Cold plasma approximation

2020

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ...

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in t ...

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

2019

Wave Normal Angle Distribution of Fast Magnetosonic Waves: A Survey of Van Allen Probes EMFISIS Observations

Using Van Allen Probe Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) wave observations from September 2012 to May 2018, we statistically investigate the distributions of power-weighted wave normal angle (WNA) of fast magnetosonic (MS) waves from L = 2\textendash6 within \textpm15\textdegree geomagnetic latitudes. The spatial distributions show that the MS WNAs are mainly confined within 87\textendash89\textdegree near the geomagnetic equator and decrease with increasing magnetic latitude. Furth ...

Zou, Zhengyang; Zuo, Pingbing; Ni, Binbin; Wei, Fengsi; Zhao, Zhengyu; Cao, Xing; Fu, Song; Gu, Xudong;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026556

Empirical Model; Fast Magnetosonic Waves; latitudinal dependence; power-weighted wave normal angles; spatial distributions; Van Allen Probes

2018

Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction

Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2-D particle-in-cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters ...

Min, Kyungguk; Boardsen, Scott; Denton, Richard; Liu, Kaijun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA026037

2D particle-in-cell simulation; Fast Magnetosonic Waves; Perpendicular propagation; Van Allen Probes

Global distribution of proton rings and associated magnetosonic wave instability in the inner magnetosphere

Using the Van Allen Probe A observations, we obtained the global distribution of proton rings and calculated the linear wave growth rate of fast magnetosonic (MS) waves in the region L ~ 3-6. Our statistical and calculated results demonstrate that MS waves can be locally excited on the dayside outside the plasmapause, as well as in the dusk sector inside the plasmapause. The frequency range of unstable MS waves is strongly modulated by the ratio of the proton ring velocity (Vr) to the local Alfv\ en speed (VA). High harmonic ...

Yuan, Zhigang; Ouyang, Zhihai; Yu, Xiongdong; Huang, Shiyong; Yao, Fei; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079999

Fast Magnetosonic Waves; linear growth rates; locally excited; low harmonic magnetosonic waves; Proton rings; Van Allen Probes

Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism

Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density ex ...

Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024867

Fast Magnetosonic Waves; inner magnetosphere; observation-simulation comparison; Van Allen Probes; wave excitation

2016

Survey of the Frequency Dependent Latitudinal Distribution of the Fast Magnetosonic Wave Mode from Van Allen Probes EMFISIS Wave Form Receiver Plasma Wave Analysis

We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 9/21/2012 to 8/1/2014. We show that statistically the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (fcP) has a distinct funnel shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma dens ...

Boardsen, Scott; Hospodarsky, George; Kletzing, Craig; Engebretson, Mark; Pfaff, Robert; Wygant, John; Kurth, William; Averkamp, Terrance; Bounds, Scott; Green, Jim; De Pascuale, Sebastian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015JA021844

EMFISIS; Fast Magnetosonic Waves; latitudinal distribution; statistical study; Van Allen Probes; wave normal angle

2014

Van Allen Probe Observations of Periodic Rising Frequencies of the Fast Magnetosonic Mode

Near simultaneous periodic dispersive features of fast magnetosonic mode emissions are observed by both Van Allen Probes spacecraft while separated in magnetic local time by ~5 hours: Probe A at 15 and Probe B at 9\textendash11 hours. Both spacecraft see similar frequency features, characterized by a periodic repetition at ~180 s. Each repetition is characterized by a rising frequency. Since no modulation is observed in the proton shell distribution, the plasma density, or in the background magnetic field at either spacecraf ...

Boardsen, S.; Hospodarsky, G.; Kletzing, C.; Pfaff, R.; Kurth, W.; Wygant, J.; MacDonald, E.;

Published by: Geophysical Research Letters      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014GL062020

Fast Magnetosonic Waves; Inner Dayside Magnetosphere; Periodic-Dispersive Features; Van Allen Probes



  1