Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 21 entries in the Bibliography.
Showing entries from 1 through 21
2021 |
Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron de ... Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029073 plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes |
2020 |
Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ... Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi; Published by: Earth and Planetary Physics Published on: 11/2020 YEAR: 2020   DOI: https://doi.org/10.26464/epp2020060 radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes |
On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long ... Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028098 Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes |
Cross-Scale Quantification of Storm-Time Dayside Magnetospheric Magnetic Flux Content A clear understanding of storm-time magnetospheric dynamics is essential for a reliable storm forecasting capability. The dayside magnetospheric response to an interplanetary coronal mass ejection (ICME; dynamic pressure Pdyn > 20 nPa and storm-time index SYM-H < −150 nT) is investigated using in situ OMNI, Geotail, Cluster, MMS, GOES, Van Allen Probes, and THEMIS measurements. The dayside magnetic flux content is directly quantified from in situ magnetic field measurements at different radial distances. The arrival ... Akhavan-Tafti, M.; Fontaine, D.; Slavin, J.; Le Contel, O.; Turner, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028027 interplanetary coronal mass ejection; magnetic flux quantification; cross-scale observations; flux transfer event; Dungey cycle; Geomagnetic storm; Van Allen Probes |
Evolutions of equatorial ring current ions during a magnetic storm In this paper, we present evolutions of the phase space density (PSD) spectra of ring current (RC) ions based on observations made by Van Allen Probe B during a geomagnetic storm on 23–24 August 2016. By analyzing PSD spectra ratios from the initial phase to the main phase of the storm, we find that during the main phase, RC ions with low magnetic moment μ values can penetrate deeper into the magnetosphere than can those with high μ values, and that the μ range of PSD enhancement meets the relationship: S(O+) > S(He+) > ... Huang, Zheng; Yuan, Zhigang; Yu, Xiongdong; Published by: Earth and Planetary Physics Published on: 03/2020 YEAR: 2020   DOI: 10.26464/epp2020019 ULF waves; ring current; wave-particle interactions; Radial Transport; Geomagnetic storm; Decay rates; Van Allen Probes |
Global Simulation of Electron Cyclotron Harmonic Wave Instability in a Storm-Time Magnetosphere Abstract Electron cyclotron harmonic (ECH) waves are electrostatic emissions between the ECHs and play a dominant role for precipitating energetic electrons in the magnetotail. Statistically, the ECH wave intensity is stronger at nightside and dawnside than at dayside and duskside. In this study, we, for the first time, simulate the global ECH wave evolution during a geomagnetic storm event using Ring current Atmosphere interactions Model with Self-Consistent Magnetic field (RAM-SCB) combined with a linear growth rate solver ... Liu, Xu; Chen, Lunjin; Engel, Miles; Jordanova, Vania; Published by: Geophysical Research Letters Published on: 02/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019GL086368 ECH wave global instability; RAM-SCB model; Geomagnetic storm; Van Allen Probes |
2019 |
Two wave packets of second harmonic poloidal Pc 4 waves with a wave frequency of ~7 mHz were detected by Van Allen Probe A at a radial distance of ~5.8 RE and magnetic local time of 13 hr near the magnetic equator, where plasmaspheric refilling was in progress. Proton butterfly distributions with energy dispersions were also measured at the same time; the proton fluxes at 10-30 keV oscillated with the same frequency as the Pc 4 waves. Using the ion sounding technique, we find that the Pc 4 waves propagated eastward with an a ... Yamamoto, K.; e, Nos\; Keika, K.; Hartley, D.P.; Smith, C.W.; MacDowall, R.J.; Lanzerotti, L.J.; Mitchell, D.G.; Spence, H.E.; Reeves, G.D.; Wygant, J.R.; Bonnell, J.W.; Oimatsu, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019JA027158 drift-bounce resonance; Geomagnetic storm; plasmasphere; ring current; substorm; ULF wave; Van Allen Probes |
Using data from Defense Meteorological Satellite Program 16\textendash18, National Oceanic and Atmospheric Administration 15\textendash19, and METOP 1\textendash2 satellites, we reconstructed for the first time a two-dimensional statistical distribution of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm with time resolution of 6 hr. Simultaneously, we used the data from Van Allen Probes and Time History of Events and Macroscale Interactions missions to obtain the in situ plasma pressure in ... Stepanova, M.; Antonova, E.E.; Moya, P.S.; Pinto, V.A.; Valdivia, J.A.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA025965 Dynamic pressure; Geomagnetic storm; inner magnetosphere; plasma pressure; Solar wind; Van Allen Probes |
2018 |
Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Prob ... e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.; Published by: Geophysical Research Letters Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018GL080122 Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite |
During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10-h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3-6 and MLT=2 - 10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 Me ... Yang, Chang; Xiao, Fuliang; He, Yihua; Liu, Si; Zhou, Qinghua; Guo, Mingyue; Zhao, Wanli; Published by: Geophysical Research Letters Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017GL075894 energetic electron; Geomagnetic storm; outer radiation belt; Van Allen Probes; Wave-particle interaction; whistler-mode chorus wave |
2017 |
Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1-~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convec ... Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017JA024702 Geomagnetic storm; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model |
Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm There was a geomagnetic storm on 6\textendash8 March 2016, in which Van Allen Probes A and B separated by \~2.5 h measured increase of relativistic electrons with energies \~ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equati ... Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Alm, L.; Farrugia, C.; Kurth, W.; Baker, D.; Blake, J.; Funsten, H.; Reeves, G.; Ergun, R.; Khotyaintsev, Yu.; Lindqvist, P.-A.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024540 chorus waves; Geomagnetic storm; relativistic electrons; Van Allen Probes |
2016 |
EMIC waves and associated relativistic electron precipitation on 25-26 January 2013 Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25\textendash26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1\textendash3.9 and magnetic local time (MLT) = 21.0\texten ... Zhang, Jichun; Halford, Alexa; Saikin, Anthony; Huang, Chia-Lin; Spence, Harlan; Larsen, Brian; Reeves, Geoffrey; Millan, Robyn; Smith, Charles; Torbert, Roy; Kurth, William; Kletzing, Craig; Blake, Bernard; Fennel, Joseph; Baker, Daniel; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2016 YEAR: 2016   DOI: 10.1002/2016JA022918 BARREL; EMIC waves; FFT; Geomagnetic storm; relativistic electron precipitation (REP); Van Allen Probes |
The Source of O + in the Storm-time Ring Current A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, t ... Kistler, L.M.; Mouikis, C.; Spence, H.E.; Menz, A.M.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M.; Wygant, J.R.; Lanzerotti, L.J.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2015JA022204 Geomagnetic storm; Ionosphere; oxygen; plasma sheet; Plasma Sources; ring current; Van Allen Probes |
Multispacecraft Observations and Modeling of the June 22/23, 2015 Geomagnetic Storm The magnetic storm of June 22-23, 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE, and ionospheric flow data from DMSP. Our real-time space weather alert system sent out a \textquotedblleftred alert\textquotedblright, correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric Oxygen, dipolarizations in the MMS magnetometer dat ... Reiff, P.; Daou, A.; Sazykin, S; Nakamura, R.; Hairston, M.; Coffey, V.; Chandler, M.; Anderson, B.; Russell, C.; Welling, D.; Fuselier, S.; Genestreti, K.; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL069154 Dipolarization; Geomagnetic storm; MMS; prediction; simulation; Space weather; Van Allen Probes |
Nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012 In this study, we investigate the possibility of nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012. The data we use were measured by the Van Allen Probe B. Wave data and plasma sheet electron data are analyzed. Chorus waves were frequently measured in the morning side during the main phase of this storm. Large-amplitude chorus waves were seen of the order of \~0.6 nT and >7 mV/m, which are similar to or larger than the typical ULF waves. The waves quite often consist of rising tones during the burst ... Matsui, H.; Paulson, K.; Torbert, R.; Spence, H.; Kletzing, C.; Kurth, W.; Skoug, R.; Larsen, B.; Breneman, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2016 YEAR: 2016   DOI: 10.1002/2015JA021772 chorus waves; Geomagnetic storm; nonlinearity; Van Allen Probes |
2015 |
Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87\% of the storms, 0.3\textendash2.5 MeV electron fluxes show an increase, whereas 2.5\textendash14 MeV electron fluxes increase in only 35\% of the storms. Superposed epoch analyses suggest that suc ... Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2015 YEAR: 2015   DOI: 10.1002/2015JA021440 energy dependence; Geomagnetic storm; Radiation belts; relativistic electrons; Solar wind |
We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 - 6.3, with a lower frequency band 0.1 - 0.5fce and a peak spectral density \~[10-4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (\~ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a ... He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2015 YEAR: 2015   DOI: 10.1002/2015JA021376 chorus wave excitation; energetic electrons; Geomagnetic storm; Van Allen Probes; Van Allen probes results; Wave-particle interaction |
Extreme geomagnetic disturbances due to shocks within CMEs We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth\textquoterights magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock a ... Lugaz, N.; Farrugia, C.; Huang, C.-L.; Spence, H.; Published by: Geophysical Research Letters Published on: 06/2015 YEAR: 2015   DOI: 10.1002/2015GL064530 coronal mass ejections; Geomagnetic storm; magnetopause; magnetosheath; shocks |
Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much hig ... Dai, Lei; Takahashi, Kazue; Lysak, Robert; Wang, Chi; Wygant, John; Kletzing, Craig; Bonnell, John; Cattell, Cynthia; Smith, Charles; MacDowall, Robert; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei; Tao, Xin; Chen, Lunjin; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2015 YEAR: 2015   DOI: 10.1002/2015JA021134 Geomagnetic storm; Pc4 ULF waves; poloidal waves; ring current; solar wind dynamic pressure; Van Allen Probes |
We investigate an electron flux dropout during a weak storm on 7\textendash8 November 2008, with Dst minimum value being -37 nT. During this period, two clear dropouts were observed on GOES 11 > 2 MeV electrons. We also find a simultaneous dropout in the subrelativistic electrons recorded by Time History of Events and Macroscale Interactions during Substorms probes in the outer radiation belt. Using the Radiation Belt Environment model, we try to reproduce the observed dropout features in both relativistic and subrelativisti ... Hwang, J.; Choi, E.-J.; Park, J.-S.; Fok, M.-C.; Lee, D.-Y.; Kim, K.-C.; Shin, D.-K.; Usanova, M.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2015 YEAR: 2015   DOI: 10.1002/2015JA021085 atmospheric precipitation; flux dropout; Geomagnetic storm; magneopause shadowing; Radiation belt; RBE model |
1