Found 3 entries in the Bibliography.

Showing entries from 1 through 3


Ion Injection Triggered EMIC Waves in the Earth\textquoterights Magnetosphere

We present Van Allen Probe observations of electromagnetic ion cyclotron (EMIC) waves triggered solely due to individual substorm-injected ions in the absence of storms or compressions of the magnetosphere during 9 August 2015. The time at which the injected ions are observed directly corresponds to the onset of EMIC waves at the location of Van Allen Probe A (L = 5.5 and 18:06 magnetic local time). The injection was also seen at geosynchronous orbit by the Geostationary Operational Environmental Satellite and Los Alamos Nat ...

Remya, B.; Sibeck, D.; Halford, A.; Murphy, K.; Reeves, G.; Singer, H.; Wygant, J.; Perez, Farinas; Thaller, S.;

YEAR: 2018     DOI: 10.1029/2018JA025354

EMIC waves; Ion injections; magnetic dip; substorm; Van Allen Probes

Response of Different Ion Species to Local Magnetic Dipolarization Inside Geosynchronous Orbit

This paper examines how hydrogen, helium and oxygen (H, He and O) ion fluxes at 1\textendash1000 keV typically respond to local magnetic dipolarization inside geosynchronous orbit (GEO). We extracted 144 dipolarizations which occurred at magnetic inclination > 30\textdegree from the 2012\textendash2016 tail seasons\textquoteright observations of the Van Allen Probes spacecraft and then defined typical flux changes of these ion species by performing a superposed epoch analysis. On average, the dipolarization inside GEO is acc ...

Motoba, T.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A.; Mitchell, D.; Takahashi, K.; Lanzerotti, L.; Kletzing, C.; Spence, H.; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018JA025557

deep inside geosynchronous orbit; dipolarizations; Ion injections; ion species; Van Allen Probes


The role of small-scale ion injections in the buildup of Earth\textquoterights ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm

Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. Durin ...

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Sotirelis, T.; Mauk, B.; Lanzerotti, L.;

YEAR: 2014     DOI: 10.1002/2014JA020096

Geomagnetic storms; Ion injections; ring current; Van Allen Probes