Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 46 entries in the Bibliography.
Showing entries from 1 through 46
2021 |
Direct evidence reveals transmitter signal propagation in the magnetosphere AbstractSignals from very-low-frequency transmitters on the ground are known to induce energetic electron precipitation from the Earth’s radiation belts. The effectiveness of this mechanism depends on the propagation characteristics of those signals in the magnetosphere, and in particular whether the signals are ducted or nonducted along channels of enhanced plasma density, analogous to optical fibres. Here we perform a statistical analysis of in-situ waveform data collected by the Van Allen Probes satellites that shows th ... Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; Horne, Richard; Published by: Geophysical Research Letters Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093987 VLF transmitters; ducted propagation; nonducted propagation; Magnetosphere; Van Allen Probes |
Whistler-mode waves trapped by density irregularities in the Earth s magnetosphere Abstract Whistler-mode waves are electromagnetic waves pervasively observed in the Earth s and other planetary magnetospheres. They are considered to be mainly responsible for producing the hazardous radiation and diffuse aurora, which heavily relies on their properties. Density irregularities, frequently observed in the Earth s magnetospheres, are found to change largely the properties of whistler-mode waves. Here we report, using Van Allen Probes measurements, whistler-mode waves strongly modulated by two different density ... Ke, Yangguang; Chen, Lunjin; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Chen, Rui; Chen, Huayue; Wang, Shui; Published by: Geophysical Research Letters Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL092305 WHISTLER-MODE WAVES; density irregularities; Magnetosphere; Radiation belts; particle-in-cell simulation; Wave trapping; Van Allen Probes |
Periodic Rising and Falling Tone ECH Waves from Van Allen Probes Observations AbstractElectron cyclotron harmonic (ECH) waves are known to precipitate plasma sheet electrons into the upper atmosphere and generate diffuse aurorae. In this study, we report quasi-periodic rising (3 events) and falling tone (22 events) ECH waves observed by Van Allen Probes, and evaluate their properties. These rising and falling tone ECH waves prefer to occur during quiet geomagnetic conditions over the dusk to midnight sector in relatively high-density (10–80 cm-3) regions. Their repetition periods increase with incre ... Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Published by: Geophysical Research Letters Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL091330 ECH wave; falling tone; rising tone; Magnetosphere; plasma wave; Van Allen Probes |
Abstract We analyzed the magnetospheric global response to dynamic pressure pulses (DPPs) using the Heliophysics System Observatory (HSO) and ground magnetometers. During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed “cavity” and reacts to solar wind DPPs more simply than during southward IMF. In this study we use solar wind data collected by ACE and WIND together with magnetic field observations of Geotail, Cluster, THEMIS, MMS, Van Allen Probes, GOES missions, and groun ... Vidal-Luengo, S.; Moldwin, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028587 Multi-satellite; Heliophysics System Observatory; Dynamic Pressure Pulse; Heliophysics; Magnetosphere; Van Allen Probes |
2020 |
TWINS Observations of the Dynamics of Ring Currents Ion Spectra on 17th March and 7th October 2015 Direct comparisons between RBSP (Van Allen Probes or Radiation Belt Storm Probes) and TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) for the main phase of two storms, 17th March and 7th October 2015, showed agreement between the in–situ ion measurements and the ion spectra from the deconvolved energetic neutral atom (ENA) measurements, except when O+ ions were significant. Spatial evolution of individual energy peaks in the ion spectra are studied using TWINS data. O+ ions are seen to result in intense peaks at ... Shekhar, S.; Perez, J.; Ferradas, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028156 Ring Currents; Magnetosphere; energy dependent drift; ion nose; Substorm Injections; Ion Spectra; Van Allen Probes |
We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ... Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.; Published by: Geophysical Research Letters Published on: 12/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090632 Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes |
Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagati ... Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John; Published by: Geophysical Research Letters Published on: 11/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090027 ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes |
Simulations of Electron Flux Oscillations as Observed by MagEIS in Response to Broadband ULF Waves Coherent electron flux oscillations of hundreds of keV are often observed by the Van Allen Probes in the magnetosphere during quiet times in association with ultralow frequency (ULF) waves. They are observed in the form of periodic flux fluctuations, with a drift frequency that is energy dependent, but are not associated with drift echoes following storm- or substorm-related energetic particle injections. Instead, they are associated with the resonant interaction of electrons with ULF waves and are an indication of ongoing e ... Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Khoo, Leng; Turner, Drew; Liu, Wenlong; Claudepierre, Seth; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027798 electron flux oscillations; ULF waves; Magnetosphere; Radiation belts; radial diffusion; particle tracing simulations; Van Allen Probes |
Abstract A comprehensive numerical raytracing study of whistler mode wave power with the inclusion of finite background electron and ion temperature is performed in order to investigate wave power distribution in relation to the plasmapause. Both Landau damping and linear growth of whistler mode waves are taken into account using a bi-Maxwellian hot electron distribution as well as an isotropic hot electron distribution. Isotropic and bi-Maxwellian distributions yield similar results of statistical spatial wave power for fre ... Maxworth, A.; Gołkowski, M.; Malaspina, D.; Jaynes, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2019JA027154 hiss; plasmasphere; Warm Plasma; Raytracing; Magnetosphere; Van Allen Probes |
Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes Abstract The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not dire ... Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2019JA027618 radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes |
Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ... Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2020JA027776 quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes |
A comprehensive numerical raytracing study of whistler mode wave power with the inclusion of finite background electron and ion temperature is performed in order to investigate wave power distribution in relation to the plasmapause. Both Landau damping and linear growth of whistler mode waves are taken into account using a bi-Maxwellian hot electron distribution as well as an isotropic hot electron distribution. Isotropic and bi-Maxwellian distributions yield similar results of statistical spatial wave power for frequencies ... Maxworth, A.; Gołkowski, M.; Malaspina, D.; Jaynes, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019JA027154 hiss; plasmasphere; Warm Plasma; Raytracing; Magnetosphere; Van Allen Probes |
Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not directly meas ... Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019JA027618 radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes |
We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the ... Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027776 quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes |
The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ... Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.; Published by: Geophysical Research Letters Published on: 03/2020 YEAR: 2020   DOI: 10.1029/2020GL086991 Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes |
2019 |
On 23 February 2014, Van Allen Probes sensors observed quite strong electromagnetic ion cyclotron (EMIC) waves in the outer dayside magnetosphere. The maximum amplitude was more than 14 nT, comparable to 7\% of the magnitude of the ambient magnetic field. The EMIC waves consisted of a series of coherent rising tone emissions. Rising tones are excited sporadically by energetic protons. At the same time, the probes detected drastic fluctuations in fluxes of MeV electrons. It was found that the electron fluxes decreased by more ... Nakamura, S.; Omura, Y.; Kletzing, C.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: May-08-2020 YEAR: 2019   DOI: 10.1029/2019JA026772 EMIC waves; Magnetosphere; microburst; nonlinear; Radiation belt; Van Allen Probes; Wave-particle interaction |
Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and co ... Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2018JA026401 empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions |
Empirical Modeling of the Geomagnetosphere for SIR and CME-Driven Magnetic Storms During geomagnetic disturbances, the solar wind arrives in the form of characteristic sequences lasting from tens of hours to days. The most important magnetic storm drivers are the coronal mass ejections (CMEs) and the slow-fast stream interaction regions (SIRs). Previous data-based magnetic field models did not distinguish between these types of the solar wind driving. In the present work we retained the basic structure of the Tsyganenko and Andreeva (2015) model but fitted it to data samples corresponding to (1) SIR-drive ... Published by: Journal of Geophysical Research: Space Physics Published on: 07/2019 YEAR: 2019   DOI: 10.1029/2018JA026008 Magnetic Storms; Magnetosphere; Modeling; Solar wind; spacecraft data; Van Allen Probes |
We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25 ... Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2019 YEAR: 2019   DOI: 10.1029/2019JA026913 Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave |
Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave el ... Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL083118 |
2018 |
Eigenmodes of the transverse Alfv\ enic resonator at the plasmapause: a Van Allen Probes case study A Pc4 ULF wave was detected at spacecraft B of the Van Allen Probes at the plasmapause. A distinctive feature of this wave is the strong periodical modulation of the wave. It is assumed that this modulation is a beating of oscillations close in frequency: at least two harmonics with frequencies of 15.3 and 13.6 MHz are found. It is shown that these harmonics can be the eigenmodes of the transverse resonator at the local maximum of the Alfv\ en velocity. In addition, the observed wave was in a drift resonance with energetic 8 ... Mager, Pavel; Mikhailova, Olga; Mager, Olga; Klimushkin, Dmitri; Published by: Geophysical Research Letters Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2018GL079596 Magnetosphere; Plasmapause; poloidal Alfven waves; transverse resonator; ULF waves; Van Allen Probes; Wave-particle interaction |
Energisation of the ring current by substorms The substorm process releases large amounts of energy into the magnetospheric system, although where the energy is transferred to and how it is partitioned remains an open question. In this study, we address whether the substorm process contributes a significant amount of energy to the ring current. The ring current is a highly variable region, and understanding the energisation processes provides valuable insight into how substorm - ring current coupling may contribute to the generation of storm conditions and provide a sou ... Sandhu, J.; Rae, I.; Freeman, M.; Forsyth, C.; Gkioulidou, M.; Reeves, G.; Spence, H.; Jackman, C.; Lam, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2018JA025766 BSPICE; HOPE; Magnetosphere; ring current; substorms; Van Allen Probes |
Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event-specific and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultra-relativisti ... Jaynes, A.; Ali, A.; Elkington, S.; Malaspina, D.; Baker, D.; Li, X.; Kanekal, S.; Henderson, M.; Kletzing, C.; Wygant, J.; Published by: Geophysical Research Letters Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2018GL079786 Magnetosphere; radial diffusion; Radiation belts; ULF waves; Van Allen Probes |
2017 |
Conjugate Ground-Spacecraft Observations of VLF Chorus Elements We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propag ... Demekhov, A.; Manninen, J.; ik, O.; Titova, E.; Published by: Geophysical Research Letters Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017GL076139 ground-spacecraft observations; Magnetosphere; Van Allen Probes; VLF chorus |
Relativistic Electron Precipitation (REP) in the atmosphere can contribute significantly to electron loss from the outer radiation belts. In order to estimate the contribution to this loss, it is important to estimate the spatial extent of the precipitation region. We observed REP with the zenith pointing (0o) Medium Energy Proton Electron Detector (MEPED) on board Polar Orbiting Environmental Satellites (POES), for 15 years (2000-2014) and used both single and multi satellite measurements to estimate an average extent of th ... Shekhar, Sapna; Millan, Robyn; Smith, David; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024716 Magnetosphere; precipitation; Radiation belts; relativistic electrons; spatial scale of REP; Van Allen Probes; wave particle scattering |
We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma de ... Tetrick, S.; Engebretson, M.; Posch, J.; Olson, C.; Smith, C.; Denton, R.; Thaller, S.; Wygant, J.; Reeves, G.; MacDonald, E.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023392 |
2016 |
Local time variations of high-energy plasmaspheric ion pitch angle distributions Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1\textendash10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrum ... Sarno-Smith, Lois; Liemohn, Michael; Skoug, Ruth; Larsen, Brian; Moldwin, Mark; Katus, Roxanne; Wygant, John; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2015JA022301 algorithm; Magnetosphere; pitch angles; plasmasphere; spacecraft potential corrections; Van Allen Probes |
Compressional ULF wave modulation of energetic particles in the inner magnetosphere We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional mag ... Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022706 Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes |
Electron butterfly distribution modulation by magnetosonic waves The butterfly pitch angle distribution is observed as a dip in an otherwise normal distribution of electrons centered about αeq=90\textdegree. During storm times, the formation of the butterfly distribution on the nightside magnetosphere has been attributed to L shell splitting combined with magnetopause shadowing and strong positive radial flux gradients. It has been shown that this distribution can be caused by combined chorus and magnetosonic wave scattering where the two waves work together but at different local times. ... Maldonado, Armando; Chen, Lunjin; Claudepierre, Seth; Bortnik, Jacob; Thorne, Richard; Spence, Harlan; Published by: Geophysical Research Letters Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016GL068161 butterfly; electron; magnetosonic; Magnetosphere; Van Allen Probes; wave particle interaction |
2015 |
The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and ... Skov, Tamitha; Fennell, Joseph; Roeder, James; Blake, Bernard; Claudepierre, Seth; Published by: IEEE Transactions on Plasma Science Published on: 09/2015 YEAR: 2015   DOI: 10.1109/TPS.2015.2468214 artificial satellites; dielectric materials; electrons; Energy measurement; MAGEis; Magnetosphere; particle detectors; protons; Van Allen Probes |
A statistical study of EMIC waves observed by Cluster: 1. Wave properties Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, as well as local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the MLT-L frame within a li ... Allen, R.; Zhang, J.; Kistler, L.; Spence, H.; Lin, R.; Klecker, B.; Dunlop, M.; e, Andr\; Jordanova, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2015 YEAR: 2015   DOI: 10.1002/2015JA021333 |
The twin Van Allen Probes spacecraft witnessed a series of lobe encounters between 0200 and 0515 UT on November 14th 2012. Although lobe entry had been observed previously by the other spacecraft, the two Van Allen Probe spacecraft allow us to observe the motion of the boundary for the first time. Moreover, this event is unique in that it consists of a series of six quasi-periodic lobe entries. The events occurred on the dawn flank between 4 and 6.6 local time and at altitudes between 5.6 and 6.2 RE. During the events Dst dr ... Dixon, P.; MacDonald, E.; Funsten, H.; Glocer, A.; Grande, M.; Kletzing, C.; Larsen, B.; Reeves, G.; Skoug, R.; Spence, H.; Thomsen, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2015 YEAR: 2015   DOI: 10.1002/2014JA020883 Lobes; Magnetosphere; Modelling; Open/closed field line boundary; Van Allen Probes |
Solar cycle dependence of ion cyclotron wave frequencies Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth\textquoterights radiation belts is one ofmany topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approxim ... Lessard, Marc; Lindgren, Erik; Engebretson, Mark; Weaver, Carol; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2015 YEAR: 2015   DOI: 10.1002/2014JA020791 EMIC waves; Ion cyclotron; Magnetosphere; plasma waves; Radiation belts; solar cycles |
What frequencies of standing surface waves can the subsolar magnetopause support? It is has been proposed that the subsolar magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern/southern ionospheres forming a standing wave. While the eigenfrequencies of these so-called Kruskal-Schwartzschild (KS) modes have been estimated under typical conditions, the potential distribution of frequencies over the full range of solar wind conditions is not know. Using models of the magnetosphere and magnetosheath applied to an entire solar cycle\textquoterights w ... Published by: Journal of Geophysical Research: Space Physics Published on: 04/2015 YEAR: 2015   DOI: 10.1002/2014JA020545 |
2014 |
For over a decade, incoherent scatter radar observations of the mid and auroral-latitude ionosphere combined with ground based GPS observations of total electron content (TEC) have been used to study the intense storm enhanced density (SED) plumes that form over the Americas during major geomagnetic storms [1]. Magnetic field mapping of the ionospheric observations to magnetospheric heights revealed close correspondence between the SED and plasmasphere erosion plumes observed from space in EUV imagery by the IMAGE satellite ... Published by: Published on: 08/2014 YEAR: 2014   DOI: 10.1109/URSIGASS.2014.6929943 magnetic fields; Magnetic resonance imaging; Magnetosphere; Van Allen Probes |
The Sub-Auroral Polarization Stream (SAPS) is a geospace boundary layer phenomenon associated with the interaction of the warm plasma of the magnetospheric ring current with the cold ions and electrons of the outer plasmasphere [1]. Driven by ring current enhancements during magnetospheric disturbances, SAPS location, intensity, and characteristics are greatly influenced by the underlying ionosphere. Strong M-I coupling by means of field-aligned currents creates a high-speed (>1000 m/s) westward plasma flow channel in the io ... Foster, John; Erickson, Philip; Published by: Published on: 08/2014 YEAR: 2014   DOI: 10.1109/URSIGASS.2014.6929852 |
The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A key wave-particle interaction important to both acceleration and loss in the radiation belts is the of whistler-mode chorus interacting with energetic electrons. To measure this important radiation belt interaction, the two-satellite Van Allen Probes mission utilizes one of the most complete sets of measurements ever made in the inner magnetosphere. As part ... Published by: Published on: 08/2014 YEAR: 2014   DOI: 10.1109/URSIGASS.2014.6929872 Instruments; Magnetic field measurement; magnetic fields; Magnetometers; Magnetosphere; Van Allen Probes |
Prompt energization of relativistic and highly relativistic electrons during a substorm interval On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at \~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons [1]. A 50\% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron f ... Foster, John; Erickson, Philip; Published by: Published on: 08/2014 YEAR: 2014   DOI: 10.1109/URSIGASS.2014.6929876 Magnetic flux; Magnetosphere; Van Allen Belts; Van Allen Probes |
Radiation belt losses observed from multiple stratospheric balloons over Antarctica Relativistic electrons, trapped by Earth\textquoterights magnetic field, have received increasing attention since increasing numbers of commercial and research spacecraft traverse regions of high radiation flux. The Van Allen probes were launched into Earth\textquoterights radiation belts in September 2012, making comprehensive measurements of charged particle fluxes and electromagnetic fields, with the objective of a better understanding of the processes that modulate radiation belt fluxes. Because losses of radiation belt ... McCarthy, Michael; Millan, Robyn; Sample, John; Smith, David; Published by: Published on: 08/2014 YEAR: 2014   DOI: 10.1109/URSIGASS.2014.6929960 Extraterrestrial measurements; Loss measurement; Magnetosphere; Van Allen Probes |
Estimates of the power per mode number of broadband ULF waves at geosynchronous orbit In studies of radial diffusion processes in the magnetosphere it is well known that ultralow frequency (ULF) waves of frequency mωd can resonantly interact with particles of drift frequency ωd, where m is the waves\textquoteright azimuthal mode number. Due to difficulties in estimating m, an oversimplifying assumption is often made in simulations, namely that all ULF wave power is located at a single mode number. In this paper a technique is presented for extracting information on the distribution of ULF power in a range o ... Published by: Journal of Geophysical Research: Space Physics Published on: 07/2014 YEAR: 2014   DOI: 10.1002/2013JA019238 Magnetosphere; mode number; radial diffusion; Radiation belts; ULF waves; ultralow frequency |
The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth\textquoterights magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each o ... Mauk, B.; Blake, J.; Baker, D.; Clemmons, J.; Reeves, G.; Spence, H.; Jaskulek, S.; Schlemm, C.; Brown, L.; Cooper, S.; Craft, J.; Fennell, J.; Gurnee, R.; Hammock, C.; Hayes, J.; Hill, P.; Ho, G.; Hutcheson, J.; Jacques, A.; Kerem, S.; Mitchell, D.; Nelson, K.; Paschalidis, N.; Rossano, E.; Stokes, M.; Westlake, J.; Published by: Space Science Reviews Published on: 06/2014 YEAR: 2014   DOI: 10.1007/s11214-014-0055-5 Magnetic reconnection; Magnetosphere; Magnetospheric multiscale; NASA mission; Particle acceleration; Space plasma |
Photoelectron-mediated spacecraft potential fluctuations Electric field fluctuations such as those due to plasma waves in Earth\textquoterights magnetosphere may modulate photoelectrons emitted from spacecraft surface, causing fluctuations in spacecraft potential. We experimentally investigate such photoelectron-mediated spacecraft potential fluctuations. The photoelectric charge of a spacecraft model is found to increase with increasing applied electric field as more photoelectrons escape the spacecraft model surface and dissipates with a decrease in the electric field through co ... Wang, X.; Malaspina, D.; Ergun, R.; M., Hor\; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2014 YEAR: 2014   DOI: 10.1002/2013JA019502 chorus waves; electric field; Magnetosphere; photoelectrons; plasma density; spacecraft potential fluctuations |
One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE) The Colorado Student Space Weather Experiment is a 3-unit (10cm \texttimes 10cm \texttimes 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professo ... Palo, Scott; Gerhardt, David; Li, Xinlin; Blum, Lauren; Schiller, Quintin; Kohnert, Rick; Published by: Published on: 01/2014 YEAR: 2014   DOI: 10.1109/USNC-URSI-NRSM.2014.6928087 artificial satellites; atmospheric measuring apparatus; Ionosphere; Magnetic Storms; Magnetosphere; Van Allen Probes |
2013 |
Dynamics of the Earth\textquoterights Radiation Belts and Inner Magnetosphere Trapped by Earth\textquoterights magnetic field far above the planet\textquoterights surface, the energetic particles that fill the radiation belts are a sign of the Sun\textquoterights influence and a threat to our technological future. In the AGU monograph Dynamics of the Earth\textquoterights Radiation Belts and Inner Magnetosphere, editors Danny Summers, Ian R. Mann, Daniel N. Baker, and Michael Schulz explore the inner workings of the magnetosphere. The book reviews current knowledge of the magnetosphere and recent rese ... Published by: Eos, Transactions American Geophysical Union Published on: 12/2013 YEAR: 2013   DOI: 10.1002/eost.v94.5210.1002/2013EO520007 |
2012 |
Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068 As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing e ... Hudson, M.; Brito, Thiago; Elkington, Scot; Kress, Brian; Li, Zhao; Wiltberger, Mike; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 07/2012 YEAR: 2012   DOI: 10.1016/j.jastp.2012.03.017 |
Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a ... Crabtree, C.; Rudakov, L.; Ganguli, G.; Mithaiwala, M.; Galinsky, V.; Shevchenko, V.; Published by: Physics of Plasmas Published on: 01/2012 YEAR: 2012   DOI: 10.1063/1.3692092 |
1