Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 8 entries in the Bibliography.
Showing entries from 1 through 8
2019 |
Using energetic particle and wave measurements from the Van Allen Probes, Polar Orbiting Environmental Satellites (POES), and Geostationary Operational Environmental Satellite (GOES), the acceleration mechanism of ultrarelativistic electrons (>3 MeV) in the center of the outer radiation belt is investigated statistically. A superposed epoch analysis is conducted using 19 storms, which caused flux enhancements of 1.8\textendash7.7 MeV electrons. The evolution of electron phase space density radial profile suggests an energy-d ... Zhao, H.; Baker, D.N.; Li, X.; Malaspina, D.M.; Jaynes, A.N.; Kanekal, S.G.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2019JA027111 Acceleration mechanism; Inward radial diffusion; Local Acceleration; Phase space density; Radiation belts; ultrarelativistic electrons; Van Allen Probes |
We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. Fo ... Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026326 Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes |
2018 |
A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes A statistical analysis on the radiation belt dropouts is performed based on 4 years of electron phase space density data from the Van Allen Probes. The μ, K, and L* dependence of dropouts and their driving mechanisms and geomagnetic and solar wind conditions are investigated using electron phase space density data sets for the first time. Our results suggest that electronmagnetic ion cyclotron (EMIC) wave scattering is the dominant dropout mechanism at low L* region, which requires the most active geomagnetic and solar wind ... Xiang, Zheng; Tu, Weichao; Ni, Binbin; Henderson, M.; Cao, Xing; Published by: Geophysical Research Letters Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018GL078907 EMIC wave; magnetopause shadowing; Phase space density; radial diffusion; radiation belt dropout; Van Allen Probes; wave particle interaction |
What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era We survey radiation belt enhancement events during the Van Allen Probes era to determine what mechanism is the dominant cause of enhancements and where it is most effective. Two primary mechanisms have been proposed: (1) betatron/Fermi acceleration due to the Earthward radial transport of electrons which produces monotonic gradients in phase space density (PSD) and (2) \textquotedblleftlocal acceleration" due to gyro/Landau resonant interaction with electromagnetic waves which produces radially localized, growing peaks in PS ... Boyd, A.J.; Turner, D.L.; Reeves, G.D.; Spence, H.E.; Baker, D.N.; Blake, J.B.; Published by: Geophysical Research Letters Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2018GL077699 Local Acceleration; Phase space density; Radiation belt; THEMIS; Van Allen Probes |
2017 |
Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause sta ... Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024487 EMIC wave; last closed drift shell; magnetopause shadowing; Phase space density; radiation belt dropout; Van Allen Probes |
On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Pro ... Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Califf, Sam; Liu, Wenlong; Ergun, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2017 YEAR: 2017   DOI: 10.1002/2016JA023741 Flux Oscillations; MAGEis; EMFISIS; EFW; Phase space density; radial diffusion; Radiation belts; Van Allen Probes |
The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron ...
Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016JA023658 Geomagnetic storms; magnetospheric substorms; Phase space density; radiation belt electron content; radiation belt electrons; Solar wind; Van Allen Probes |
2016 |
Statistical Properties of the Radiation Belt Seed Population We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular we investigate the relationship between the 10s-100s keV seed electrons and >1 MeV core radiation belt electron population. Using a cross correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈ 0.73 with a time lag of 10-15 hours. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of ... Boyd, A.J.; Spence, H.E.; Huang, C.-L.; Reeves, G.; Baker, D.; Turner, D.L.; Claudepierre, S.; Fennell, J.; Blake, J.; Shprits, Y.Y.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022652 Phase space density; Radiation belt; seed population; Van Allen Probes |
1