Bibliography



Found 20 entries in the Bibliography.


Showing entries from 1 through 20


2020

Simultaneous Observations of Electromagnetic Ion Cyclotron (EMIC) Waves and Pitch Angle Scattering During a Van Allen Probes Conjunction

Abstract On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the ...

Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.;

YEAR: 2020     DOI: 10.1029/2019JA027424

EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering

The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies

Abstract Observationally, electron cyclotron harmonic (ECH) waves are often terminated at the outer boundary of the plasmasphere boundary layer (PBL, i.e., plasmapause). Physics of this empirical relation is not well established. In this study, two categories of ECH waves are shown by their different behaviors near PBL. For Category I, all bands of ECH waves terminate at PBL because the density ratio (nh/nc) between hot and cold electrons decreases dramatically across PBL. For Category II, ECH waves, especially the lower har ...

Liu, Xu; Chen, Lunjin; Xia, Zhiyang;

YEAR: 2020     DOI: 10.1029/2020GL087365

two types of ECH wave; Plasmapause; instability; excitation and attenuation mechanism; statistical characteristics of two types of ECH wave; Van Allen Probes

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ...

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

2019

How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions

In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > -30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecuti ...

Khoo, L.-Y.; Li, X.; Zhao, H.; Chu, X.; Xiang, Z.; Zhang, K.;

YEAR: 2019     DOI: 10.1029/2019JA027412

energetic electron enhancements; Plasmapause; Radiation Belt Dynamics; Van Allen Probes

Identifying STEVE\textquoterights Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground

The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes\textquoteright footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline-only SAR emis ...

Chu, Xiangning; Malaspina, David; Gallardo-Lacourt, Bea; Liang, Jun; Andersson, Laila; Ma, Qianli; Artemyev, Anton; Liu, Jiang; Ergun, Robert; Thaller, Scott; Akbari, Hassanali; Zhao, Hong; Larsen, Brian; Reeves, Geoffrey; Wygant, John; Breneman, Aaron; Tian, Sheng; Connors, Martin; Donovan, Eric; Archer, William; MacDonald, Elizabeth;

YEAR: 2019     DOI: 10.1029/2019GL082789

aurora; kinetic Alfven wave; Plasmapause; STEVE; subauroral ion drift; table red auroral arc; Van Allen Probes

Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements

Based on the measurements of ~100-keV to 10-MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump-on-tail (BOT). The exponential spectra are generally domin ...

Zhao, H.; Johnston, W.R.; Baker, D.N.; Li, X.; Ni, B.; Jaynes, A.N.; Kanekal, S.G.; Blake, J.B.; Claudepierre, S.G.; Reeves, G.D.; Boyd, A.J.;

YEAR: 2019     DOI: 10.1029/2019JA026697

Bump-on-tail energy spectrum; Energy spectrum; Exponential energy spectrum; Plasmapause; Power law energy spectrum; radiation belt electrons; Van Allen Probes

Epoch-Based Model for Stormtime Plasmapause Location

The output of a plasmapause test particle (PTP) code is used to formulate a new epoch-based plasmapause model. The PTP simulation is run for an ensemble of 60 storms spanning 3 September 2012 to 28 September 2017 and having peak Dst of -60 nT or less, yielding over 7 million model plasmapause locations. Events are automatically identified and epoch times calculated relative to the respective storm peaks. Epoch analysis of the simulated plasmapause is demonstrated to be an effective method to reveal the dynamical phases of pl ...

Goldstein, J.; De Pascuale, S.; Kurth, W.;

YEAR: 2019     DOI: 10.1029/2018JA025996

epoch-based model; Plasmapause; plasmasphere; plume; Van Allen Probes

Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere

This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak-to-peak), in the large-scale electric field (~0.24 mV/m peak-to-peak), and in the cold plasma density (~250 cm-3 \textendash ~70 cm-3 peak-to-peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declini ...

Thaller, S.; Wygant, J.; Cattell, C.; Breneman, A.; Tyler, E.; Tian, S.; Engel, A.; De Pascuale, S.; Kurth, W.; Kletzing, C.; Tears, J.; Malaspina, David;

YEAR: 2019     DOI: 10.1029/2018JA026365

convection electric field; inner magnetosphere; Plasmapause; plasmasphere; solar rotation; Van Allen Probes

2018

Eigenmodes of the transverse Alfv\ enic resonator at the plasmapause: a Van Allen Probes case study

A Pc4 ULF wave was detected at spacecraft B of the Van Allen Probes at the plasmapause. A distinctive feature of this wave is the strong periodical modulation of the wave. It is assumed that this modulation is a beating of oscillations close in frequency: at least two harmonics with frequencies of 15.3 and 13.6 MHz are found. It is shown that these harmonics can be the eigenmodes of the transverse resonator at the local maximum of the Alfv\ en velocity. In addition, the observed wave was in a drift resonance with energetic 8 ...

Mager, Pavel; Mikhailova, Olga; Mager, Olga; Klimushkin, Dmitri;

YEAR: 2018     DOI: 10.1029/2018GL079596

Magnetosphere; Plasmapause; poloidal Alfven waves; transverse resonator; ULF waves; Van Allen Probes; Wave-particle interaction

The composition of plasma inside geostationary orbit based on Van Allen Probes observations

The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and ...

Yue, Chao; Bortnik, Jacob; Li, Wen; Ma, Qianli; Gkioulidou, Matina; Reeves, Geoffrey; Wang, Chih-Ping; Thorne, Richard; T. Y. Lui, Anthony; Gerrard, Andrew; Spence, Harlan; Mitchell, Donald;

YEAR: 2018     DOI: 10.1029/2018JA025344

ion composition; plasma pressure; Plasmapause; Van Allen Probes

One-Dimensional Full Wave Simulation of Equatorial Magnetosonic Wave Propagation in an Inhomogeneous Magnetosphere

The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth\textquoterights dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude i ...

Liu, Xu; Chen, Lunjin; Yang, Lixia; Xia, Zhiyang; Malaspina, David;

YEAR: 2018     DOI: 10.1002/2017JA024336

fine-scale density structure; finite difference time domain; magnetosonic wave; Plasmapause; Van Allen Probes

2017

Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma de ...

Tetrick, S.; Engebretson, M.; Posch, J.; Olson, C.; Smith, C.; Denton, R.; Thaller, S.; Wygant, J.; Reeves, G.; MacDonald, E.; Fennell, J.;

YEAR: 2017     DOI: 10.1002/2016JA023392

EMIC waves; Magnetosphere; Plasmapause; Van Allen Probes

2016

The relationship between the plasmapause and outer belt electrons

We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. ...

Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.;

YEAR: 2016     DOI: 10.1002/2016JA023046

Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes

Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm

Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF ...

Foster, J.; Erickson, P.; Baker, D.; Jaynes, A.; Mishin, E.; Fennel, J.; Li, X.; Henderson, M.; Kanekal, S.;

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022509

barrier; Plasmapause; storm; Van Allen Probes; VLF

Determination of the Earth\textquoterights plasmapause location from the CE-3 EUVC images

The Moon-based Extreme Ultraviolet Camera (EUVC) aboard China\textquoterights Chang\textquoterighte-3 (CE-3) mission has successfully imaged the entire Earth\textquoterights plasmasphere for the first time from the side views on lunar surface. An EUVC image on 21 April 2014 is used in this study to demonstrate the characteristics and configurations of the Moon-based EUV imaging and to illustrate the determination algorithm of the plasmapause locations on the magnetic equator. The plasmapause locations determined from all the ...

He, Fei; Zhang, Xiao-Xin; Chen, Bo; Fok, Mei-Ching;

YEAR: 2016     DOI: 10.1002/2015JA021863

Chang\textquoterighte-3; EUV imaging; Plasmapause; plasmasphere; reconstruction

2015

New model fit functions of the plasmapause location determined using THEMIS observations during the ascending phase of Solar Cycle 24

It is well known that the plasmapause is influenced by the solar wind and magnetospheric conditions. Empirical models of its location have been previously developed such as those by O\textquoterightBrien and Moldwin (2003) and Larsen et al. (2006). In this study, we identified the locations of the plasmapause using the plasma density data obtained from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. We used the data for the period (2008\textendash2012) corresponding to the ascendi ...

Cho, Junghee; Lee, Dae-Young; Kim, Jin-Hee; Shin, Dae-Kyu; Kim, Kyung-Chan; Turner, Drew;

YEAR: 2015     DOI: 10.1002/2015JA021030

Plasmapause; THEMIS

2014

Characteristics of precipitating energetic electron fluxes relative to the plasmapause during geomagnetic storms

n this study we investigate the link between precipitating electrons from the Van Allen radiation belts and the dynamical plasmapause. We consider electron precipitation observations from the Polar Orbiting Environmental Satellite (POES) constellation during geomagnetic storms. Superposed epoch analysis is performed on precipitating electron observations for the 13 year period of 1999 to 2012 in two magnetic local time (MLT) sectors, morning and afternoon. We assume that the precipitation is due to wave-particle interactions ...

Whittaker, Ian; Clilverd, Mark; Rodger, Craig;

YEAR: 2014     DOI: 10.1002/2014JA020446

energetic electron precipitation; Plasmapause; POES

First observation of rising-tone magnetosonic waves

Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90\textdegree and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be \textquotedbllefttemporally continuous\textquotedblright in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, ~1 Hz/s, is ...

Fu, H.; Cao, J.; Zhima, Z.; Khotyaintsev, Y.; Angelopoulos, V.; ik, O.; Omura, Y.; Taubenschuss, U.; Chen, L.; . Y. Huang, S;

YEAR: 2014     DOI: 10.1002/grl.v41.2110.1002/2014GL061867

discrete; frequency sweep rate; magnetosonic wave; nonlinear wave-particle interaction; Plasmapause; rising tone

An unusual long-lived relativistic electron enhancement event excited by sequential CMEs

An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 \texttimes 102 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 to 3.5 \texttimes 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1, the region of enhanced fluxes extended from L = 3.5-6.5 to ...

Yang, Xiao; Zhu, Guang; Zhang, Xiao; Sun, Yue; Liang, Jin; Wei, Xin;

YEAR: 2014     DOI: 10.1002/2014JA019797

Geomagnetic storm/substorm; Interplanetary magnetic field; Plasmapause; Relativistic electron; Solar wind



  1