Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 41 entries in the Bibliography.
Showing entries from 1 through 41
2021 |
Abstract Based on Van Allen Probes observations, in this study we perform a statistical analysis of the spectral intensities of plasmaspheric hiss at L-shells of 1.8 – 3.0 in the slot region. Our results show that slot region hiss power intensifies with a strong day-night asymmetry as the level of substorm activity or L-shell increases. Using the statistical spectral profiles of plasmaspheric hiss, we calculate the drift- and bounce-averaged electron pitch angle diffusion coefficients and subsequently obtain the resultant ... Zhu, Qi; Cao, Xing; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Fu, Song; Summers, Danny; Hua, Man; Lou, Yuequn; Ma, Xin; Guo, YingJie; Guo, DeYu; Zhang, Wenxun; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029057 Plasmaspheric Hiss; Slot region; Electron loss timescales; Van Allen Probes |
Abstract We present, for the first time, a plasmaspheric hiss event observed by the Van Allen probes in response to two successive interplanetary shocks occurring within an interval of ∼2 hours on December 19, 2015. The first shock arrived at 16:16 UT and caused disappearance of hiss for ∼30 minutes. Combined effect of plasmapause crossing, significant Landau damping by suprathermal electrons and their gradual removal by magnetospheric compression led to the disappearance of hiss. Calculation of electron phase space dens ... Chakraborty, S.; Chakrabarty, D.; Reeves, G.; Baker, D.; Claudepierre, S.; Breneman, A.; Hartley, D.; Larsen, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028873 Plasmaspheric Hiss; Van Allen Probe; Interplanetary shocks; substorms; Whistlers; ULF waves; Van Allen Probes |
2020 |
We report a rare event of intense plasmaspheric hiss and chorus waves simultaneously observed at the same L shell but different magnetic local times by Van Allen Probes and Magnetospheric Multiscale. Based on the measured waves and electron distributions, we calculate the bounce-averaged diffusion coefficients and subsequently simulate the temporal evolution of electron distributions. The simulations show that the dynamics of tens to hundreds of keV electrons are jointly controlled by hiss and chorus. The dynamics of MeV ele ... Yu, J.; Wang, J.; Li, L; Cui, J.; Cao, J.; He, Z.; Published by: Geophysical Research Letters Published on: 07/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020GL088753 electron diffusion; Plasmaspheric Hiss; chorus waves; Van Allen Probes; MMS |
Quantifying the Effect of Plasmaspheric Hiss on the Electron Loss from the Slot Region Abstract We present global statistical models of both wave amplitude and wave normal angle (WNA) of plasmaspheric hiss using Van Allen Probe-A observations. They utilize the time history of solar wind parameters, i.e., interplanetary magnetic field BZ and solar wind speed, and the AE index for each measurement of hiss waves as inputs. The solar wind parameter-based model generally results in higher performance than using only the AE index as an input. Both observations and model results reveal a clear dependence of hiss wave ... Kim, Kyung-Chan; Shprits, Yuri; Wang, Dedong; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2019JA027555 Plasmaspheric Hiss; Van Allen Probes; Electron slot region; Statistical modeling; Diffusion simulation; Wave-particle interaction |
Quantifying the Effect of Plasmaspheric Hiss on the Electron Loss From the Slot Region We present global statistical models of both wave amplitude and wave normal angle (WNA) of plasmaspheric hiss using Van Allen Probe-A observations. They utilize the time history of solar wind parameters, that is, interplanetary magnetic field BZ and solar wind speed, and the AE index for each measurement of hiss waves as inputs. The solar wind parameter-based model generally results in higher performance than using only the AE index as an input. Both observations and model results reveal a clear dependence of hiss wave distr ... Kim, Kyung-Chan; Shprits, Yuri; Wang, Dedong; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019JA027555 Plasmaspheric Hiss; Van Allen Probes; Electron slot region; Statistical modeling; Diffusion simulation; Wave-particle interaction |
Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Published by: Geophysical Research Letters Published on: 01/2020 YEAR: 2020   DOI: 10.1029/2019GL086040 plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation |
Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Published by: Geophysical Research Letters Published on: YEAR: 2020   DOI: 10.1029/2019GL086040 Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation |
2019 |
Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in-between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 ... Pinto, V.; Mourenas, D.; Bortnik, J.; Zhang, X.-J.; Artemyev, A.; Moya, P.; Lyons, L.; Published by: Journal of Geophysical Research: Space Physics Published on: Dec-07-2019 YEAR: 2019   DOI: 10.1029/2019JA026509 Decay rates; EMIC waves; MeV Electron Decay; Plasmaspheric Hiss; Radiation belts; Remnant Belt; Van Allen Probes |
Triggered Plasmaspheric Hiss: Rising Tone Structures In this study, a rare hiss event observed by Van Allen Probe is reported and the possible generation is investigated based on wave and plasma measurements. The results suggest that the normal hiss (from 0.05fce to 0.5fce) with dominantly equatorward Poynting fluxes is locally generated by plasma sheet electrons via cyclotron instability. The low-frequency band (from 30 Hz to 0.05fce) with a mixture of equatorward and poleward Poynting fluxes is probably due to multiple reflections inside the plasmasphere. Such difference in ... Zhu, Hui; Liu, Xu; Chen, Lunjin; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL082688 Plasmaspheric Hiss; Radiation belts; Rising tone structure; Van Allen Probes |
Statistical Analysis of Hiss Waves in Plasmaspheric Plumes Using Van Allen Probe Observations Plasmaspheric hiss waves commonly observed in high-density regions in the Earth\textquoterights magnetosphere are known to be one of the main contributors to the loss of radiation belt electrons. There has been a lot of effort to investigate the distributions of hiss waves in the plasmasphere, while relatively little attention has been given to those in the plasmaspheric plume. In this study, we present for the first time a statistical analysis of the occurrence and the spatial distribution of wave amplitudes and wave normal ... Kim, Kyung-Chan; Shprits, Yuri; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026458 |
Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In thes ... Hartley, D.; Kletzing, C.; Chen, L.; Horne, R.; ik, O.; Published by: Geophysical Research Letters Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2019GL082111 chorus waves; EMFISIS; Plasmaspheric Hiss; plasmaspheric plumes; Van Allen Probes; wave normal angle |
Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes The generation of a high-frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (\~10-6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electr ... He, Zhaoguo; Chen, Lunjin; Liu, Xu; Zhu, Hui; Liu, Si; Gao, Zhonglei; Cao, Yong; Published by: Geophysical Research Letters Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018GL081578 electron; high frequency; local generation; Plasmaspheric Hiss; substorm injection; Van Allen Probes |
Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal an ... Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026041 Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves |
2018 |
Variation in Plasmaspheric Hiss Wave Power With Plasma Density Plasmaspheric hiss waves are commonly observed in the inner magnetosphere. These waves efficiently scatter electrons, facilitating their precipitation into the atmosphere. Predictive inner magnetosphere simulations often model hiss waves using parameterized empirical maps of observed hiss power. These maps nearly always include parameterization by magnetic L value. In this work, data from the Van Allen Probes are used to compare variation in hiss wave power with variation in both L value and cold plasma density. It is found ... Malaspina, David; Ripoll, Jean-Francois; Chu, Xiangning; Hospodarsky, George; Wygant, John; Published by: Geophysical Research Letters Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2018GL078564 inner magnetosphere; Plasmaspheric Hiss; Radiation belts; Van Allen Probes; Wave models |
Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss A new method of inferring electron plasma densities inside of the plasmasphere is presented. Utilizing observations of the electric and magnetic field wave power associated with plasmaspheric hiss, coupled with the cold plasma dispersion relation, permits calculation of the plasma density. This methodology yields a density estimate for each frequency channel and time interval where plasmaspheric hiss is observed and is shown to yield results that are generally in agreement with densities determined via other methods. A stati ... Hartley, D.; Kletzing, C.; De Pascuale, S.; Kurth, W.; ik, O.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018JA025658 Density; EMFISIS; plasmasphere; Plasmaspheric Hiss; Van Allen Probes |
Electron Scattering by Plasmaspheric Hiss in a Nightside Plume Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L ~ 4\textendash6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak ... Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man; Published by: Geophysical Research Letters Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2018GL077212 Electron scattering; nightside plumes; Plasmaspheric Hiss; Van Allen Probes |
Global model of plasmaspheric hiss from multiple satellite observations We present a global model of plasmaspheric hiss, using data from eight satellites, extending the coverage and improving the statistics of existing models. We use geomagnetic activity dependent templates to separate plasmaspheric hiss from chorus. In the region 22-14 MLT the boundary between plasmaspheric hiss and chorus moves to lower L* values with increasing geomagnetic activity. The average wave intensity of plasmaspheric hiss is largest on the dayside and increases with increasing geomagnetic activity from midnight throu ... Meredith, Nigel; Horne, Richard; Kersten, Tobias; Li, Wen; Bortnik, Jacob; Sicard-Piet, elica; Yearby, Keith; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2018JA025226 plasmasphere; Plasmaspheric Hiss; Radiation belts; Van Allen Probes |
Statistical Properties of Plasmaspheric Hiss from Van Allen Probes Observations Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near-field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L < 3, frequencies with f/fce> 0.01 (or f> 700 Hz), low geomagnetic activity levels, and be ... Hartley, D.; Kletzing, C.; ik, O.; Chen, L.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017JA024593 Bimodal; chorus waves; EMFISIS; Plasmaspheric Hiss; Van Allen Probes; wave normal angle |
2017 |
Plasmaspheric hiss is an extremely low frequency whistler-mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here, on the basis of the analysis of an event of shock-induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS and POES missions, we attempt to identify its d ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Reeves, G.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024470 Chorus; interplanetary shock; Plasmaspheric Hiss; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction |
The characteristic response of whistler mode waves to interplanetary shocks Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at p ... Yue, Chao; Chen, Lunjin; Bortnik, Jacob; Ma, Qianli; Thorne, Richard; Angelopoulos, Vassilis; Li, Jinxing; An, Xin; Zhou, Chen; Kletzing, Craig; Reeves, Geoffrey; Spence, Harlan; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024574 IP shocks; MLT dependent; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes; whistler mode chorus |
Statistical Properties of Low Frequency Plasmaspheric Hiss Plasmaspheric hiss is an important wave mode for the dynamics of inner terrestrial magnetosphere plasma populations. It acts to scatter high energy electrons out of trapped orbits about Earth and into the atmosphere, defining the inner edge of the radiation belts over a range of energies. A low-frequency component of hiss was recently identified and is important for its ability to interact with higher energy electrons compared to typically considered hiss frequencies. This study compares the statistical properties of low and ... Malaspina, David; Jaynes, Allison; Hospodarsky, George; Bortnik, Jacob; Ergun, Robert; Wygant, John; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2017 YEAR: 2017   DOI: 10.1002/2017JA024328 inner magnetosphere; plasma waves; Plasmaspheric Hiss; Van Allen Probes; Wave Statistics |
Based on the Van Allen Probe A observations from 1 October 2012 to 31 December 2014, we develop two empirical models to respectively describe the hiss wave normal angle (WNA) and amplitude variations in the Earth\textquoterights plasmasphere for different substorm activities. The long-term observations indicate that the plasmaspheric hiss amplitudes on the dayside increase when substorm activity is enhanced (AE index increases), and the dayside hiss amplitudes are greater than the nightside. However, the propagation angles ( ... Yu, J.; Li, L; Cao, J.; Chen, L.; Wang, J.; Yang, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2017 YEAR: 2017   DOI: 10.1002/2016JA023372 hiss amplitude model; hiss wave amplitude; Plasmaspheric Hiss; propagation angle model of hiss waves; substorm dependence; Van Allen Probes; wave normal angle |
Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plas ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.; Published by: Geophysical Research Letters Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016GL071987 Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation |
Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plas ...
Published by: Geophysical Research Letters Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016GL071987 Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation |
2016 |
Characteristic energy range of electron scattering due to plasmaspheric hiss We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth\textquoterights inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth\textquoterights outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to th ... Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016JA023311 electron flux decay; pitch angle scattering; Plasmaspheric Hiss; Van Allen Probes; Van Allen Probes observation |
Hiss or Equatorial Noise? Ambiguities in Analyzing Suprathermal Ion Plasma Wave Resonance Previous studies have shown that low energy ion heating occurs in the magnetosphere due to strong equatorial noise emission. Observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument recently determined there was a depletion in the 1-10 eV ion population in the post-midnight sector of Earth during quiet times at L < 3. The diurnal variation of equatorially mirroring 1-10 eV H+ ions between 2 < L < 3 is connected with similar diurnal variation in the electric field component of plasma waves rangin ... Sarno-Smith, Lois; Liemohn, Michael; Skoug, Ruth; ik, Ondrej; Morley, Steven; Breneman, Aaron; Larsen, Brian; Reeves, Geoff; Wygant, John; Hospodarsky, George; Kletzing, Craig; Moldwin, Mark; Katus, Roxanne; Zou, Shasha; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022975 equatorial noise; Low Energy Ions; plasma waves; plasmasphere; Plasmaspheric Hiss; Van Allen Probes |
Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss We test the recently developed nonlinear wave growth theory of plasmaspheric hiss against discrete rising tone elements of hiss emissions observed by the Van Allen Probes. From the phase variation of the waveforms processed by bandpass filters, we calculate the instantaneous frequencies and wave amplitudes. We obtain the theoretical relation between the wave amplitude and frequency sweep rates at the observation point by applying the convective growth rates and dispersion factors to the known relation at the equator. By plot ... Nakamura, Satoko; Omura, Yoshiharu; Summers, Danny; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016GL070333 magnetospheric dynamics; nonlinear wave growth theory; plasma wave; Plasmaspheric Hiss; Van Allen Probes; whistler-mode chorus |
Wave-driven gradual loss of energetic electrons in the slot region Resonant pitch angle scattering by plasmaspheric hiss has long been considered to be responsible for the energetic electron loss in the slot region, but the detailed quantitative comparison between theory and observations is still lacking. Here we focus on the loss of 100\textendash600 keV electrons at L = 3 during the recovery phase of a geomagnetic storm on 28 June 2013. Van Allen Probes data showed the concurrence of intense (with power up to 10-4 nT2/Hz) plasmaspheric hiss waves and significant (up to 1 order) loss of en ... He, Zhaoguo; Yan, Qi; Chu, Yuchuan; Cao, Yong; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA023087 electron loss; energetic electron; Plasmaspheric Hiss; Slot region; Van Allen Probes; Wave-particle interaction |
The relationship between the plasmapause and outer belt electrons We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. ... Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA023046 Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes |
Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013 Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simu ... Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022546 EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction |
Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observ ... Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J.; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022366 chorus waves; Plasmaspheric Hiss; RBSP results; Van Allen Probes |
Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantl ... Hartley, D.; Kletzing, C.; Kurth, W.; Bounds, S.; Averkamp, T.; Hospodarsky, G.; Wygant, J.; Bonnell, J.; ik, O.; Watt, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022501 EFW; EMFISIS; Plasmaspheric Hiss; sheath impedance; Van Allen Probes; whistler mode chorus |
2015 |
Global Empirical Models of Plasmaspheric Hiss using Van Allen Probes Plasmaspheric hiss is a whistler mode emission that permeates the Earth\textquoterights plasmasphere and is a significant driver of energetic electron losses through cyclotron-resonant pitch angle scattering. The EMFISIS instrument on the Van Allen Probes mission provides vastly improved measurements of the hiss wave environment including continuous measurements of the wave magnetic field cross-spectral matrix and enhanced low frequency coverage. Here, we develop empirical models of hiss wave intensity using two years of Van ... Spasojevic, M.; Shprits, Y.Y.; Orlova, K.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2015 YEAR: 2015   DOI: 10.1002/2015JA021803 Electron scattering; Empirical Model; inner magnetosphere; Plasmaspheric Hiss; Van Allen Probes |
By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2MeV) outside the heart of outer radiation belt (L*>= 5) undergo multiple losses during a storm sudden commencement (SSC). The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α< 30\textdegree or >150\textdegree), and the flux decay of the field-aligned electrons is independent of ... Yu, J.; Li, L.Y.; Cao, J.; Yuan, Z.; Reeves, G.; Baker, D.; Blake, J.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2015 YEAR: 2015   DOI: 10.1002/2015JA021460 Electromagnetic ion cyclotron (EMIC) waves; outer radiation belt; Outward radial diffusion driven by ULF waves; Plasmaspheric Hiss; relativistic electron loss; Storm sudden commencement; Van Allen Probes |
Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth\textquoterights radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capa ... de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2015 YEAR: 2015   DOI: 10.1002/2015JA021148 Plasmaspheric Hiss; Van Allen Probes; wave-particle interactions; Waves global model |
Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~55 ... Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Nishimura, Y.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2015 YEAR: 2015   DOI: 10.1002/2015JA021048 hiss diffusion coefficient; hiss frequency spectrum; Plasmaspheric Hiss; Van Allen Probes |
A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conj ... de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2015 YEAR: 2015   DOI: 10.1002/2014JA020941 Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model |
Disappearance of plasmaspheric hiss following interplanetary shock Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatroug ... Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.; Published by: Geophysical Research Letters Published on: 03/2015 YEAR: 2015   DOI: 10.1002/2015GL063906 Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes |
Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radi ... Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Published by: Geophysical Research Letters Published on: 02/2015 YEAR: 2015   DOI: 10.1002/2014GL062964 Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes |
2014 |
Fine structure of plasmaspheric hiss Plasmaspheric hiss has been widely regarded as a broadband, structureless, incoherent emission. In this study, by examining burst-mode vector waveform data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument on the Van Allen Probes mission, we show that plasmaspheric hiss is a coherent emission with complex fine structure. Specifically, plasmaspheric hiss appears as discrete rising tone and falling tone elements. Our study comprises the analysis of two one-hour samples within whi ... Summers, Danny; Omura, Yoshiharu; Nakamura, Satoko; Kletzing, Craig; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2014 YEAR: 2014   DOI: 10.1002/2014JA020437 |
Generation of Unusually Low Frequency Plasmaspheric Hiss It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma ... Chen, Lunjin; Thorne, Richard; Bortnik, Jacob; Li, Wen; Horne, Richard; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.; Published by: Geophysical Research Letters Published on: 08/2014 YEAR: 2014   DOI: 10.1002/2014GL060628 Chorus; Generation; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes |
1