Bibliography



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2019

Simultaneous trapping of EMIC and MS waves by background plasmas

Electromagnetic ion cyclotron waves and fast magnetosonic waves are found to be simultaneously modulated by background plasma density: both kinds of waves were observed in high plasma density regions but vanished in low density regions. Theoretical analysis based on Snell\textquoterights law and linear growth theory have been utilized to investigate the physical mechanisms driving such modulation. It is suggested that the modulation of fast magnetosonic waves might be due to trapping by plasma density structures, which resul ...

Yuan, Zhigang; Yu, Xiongdong; Ouyang, Zhihai; Yao, Fei; Huang, Shiyong; Funsten, H.;

YEAR: 2019     DOI: 10.1029/2018JA026149

EMIC waves; MS waves; Ring current ions; Van Allen Probes; Wave trapping

2018

Cold Ion Heating by Magnetosonic Waves in a Density Cavity of the Plasmasphere

Fast magnetosonic (MS) waves play an important role in the dynamics of the inner magnetosphere. Theoretical prediction and simulation have demonstrated that MS waves can heat cold ions. However, direct observational evidence of cold ion heating by MS waves has so far remained elusive. In this paper, we show a typical event of cold ion heating by magnetosonic waves in a density cavity of the plasmasphere with observations of the Van Allen Probe mission on 22 August 2013. During enhancements of the MS wave intensity in the den ...

Yuan, Zhigang; Yu, Xiongdong; Huang, Shiyong; Qiao, Zheng; Yao, Fei; Funsten, Herbert;

YEAR: 2018     DOI: 10.1002/2017JA024919

cold ion heating; Density cavities; local linear growth rates; magnetosonic waves; Ring current ions; Van Allen Probes; \textquoteleftring\textquoteright distributions

2017

Multiple-satellite observation of magnetic dip event during the substorm on 10 October, 2013

We present a multiple-satellite observation of the magnetic dip event during the substorm on October 10, 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the EMIC wave generation ...

He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G.; Xiong, Ying; Xie, Lun; Cao, Yong;

YEAR: 2017     DOI: 10.1002/2017GL074869

EMIC wave; magnetic dip; radiation belt electrons; Ring current ions; Van Allen Probes

In situ observations of magnetosonic waves modulated by background plasma density

We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with \textquoteleftring\textquoteright distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the bac ...

Yuan, Zhigang; Yu, Xiongdong; Huang, Shiyong; Wang, Dedong; Funsten, Herbert;

YEAR: 2017     DOI: 10.1002/2017GL074681

\textquoterightring\textquoteright distributions; local linear growth rates; magnetosonic waves; Ring current ions; Van Allen Probes

Oxygen cyclotron harmonic waves observed by the Van Allen Probes

Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere (L~5) off the magnetic equator (MLAT~-7.5\textdegree) during a magnetic storm. We find that the multiple-harmonic emissions have their PSD peaks at 2~8 equatorial oxygen gyro-harmonics (f~nfO+, n=2~8) while the fundamental mode (n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observatio ...

Xiongdong, Yu; Zhigang, Yuan; Dedong, Wang; Shiyong, Huang; Haimeng, Li; Tao, Yu; Zheng, Qiao;

YEAR: 2017     DOI: 10.1007/s11430-016-9024-3

Oxygen Cyclotron Harmonic Waves; Radiation belt; Ring current ions; Van Allen Probes

2016

In situ evidence of the modification of the parallel propagation of EMIC waves by heated He + ions

With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMI ...

Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Huang, Shiyong; Li, Haimeng; Yu, Tao; Qiao, Zheng; Wygant, John; Funsten, Herbert;

YEAR: 2016     DOI: 10.1002/2016JA022573

EMIC waves; He+ ion heating; Ring current ions; stop band; Van Allen Probes

2015

The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute m ...

Zhao, H.; Li, X.; Baker, D.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Rodriguez, J.;

YEAR: 2015     DOI: 10.1002/2015JA021533

Geomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes



  1